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In many operations management problems, we need to make decisions sequentially to minimize the cost

while satisfying certain constraints. One modeling approach to such problems is the constrained Markov

decision process (CMDP). In this work, we develop a data-driven primal-dual algorithm to solve CMDPs.

Our approach alternatively applies regularized policy iteration to improve the policy and subgradient ascent

to maintain the constraints. Under mild regularity conditions, we show that the algorithm converges at

rate O(1/
√
T ), where T is the number of iterations, for both the discounted and long-run average cost

formulations. Our algorithm can be easily combined with advanced deep learning techniques to deal with

large-scale problems, with the added benefit of straightforward convergence analysis. When the CMDP

has a weakly coupled structure, our approach can further reduce the computational complexity through

an embedded decomposition. We apply the algorithm to two operations management problems: multi-class

queue scheduling and multi-product inventory management. Numerical experiments demonstrate that our

algorithm, when combined with appropriate value function approximations, generates policies that achieve

superior performance compared with state-of-art heuristics.

Key words : Constrained Markov decision process, primal-dual algorithm, queue scheduling, inventory

management

1. Introduction

In sequential decision-making problems, a single objective might not suffice to describe the real

considerations faced by decision-makers. There are in general two modeling approaches to incor-

porate multiple objectives. The first is to take a weighted average of different objectives. However,

in many applications, it can be hard to determine the appropriate weight on vastly different con-

siderations (e.g., staffing cost versus service quality). The second is to optimize one objective while

putting the others as constraints. One modeling tool for the second approach is the constrained

Markov decision process (CMDP).

CMDP has been successfully applied in various applications, including admission control and

routing in telecommunication networks, scheduling for hospital admissions, and maintenance

scheduling for infrastructures (Altman 1999). Girard et al. (2020) propose to model the emergency

department (ED) scheduling as a CMDP where one tries to minimize the waiting time of the non-

urgent patients while making sure that the waiting time of the urgent patients does not exceed
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a certain threshold. In practice, the waiting-time threshold for urgent patients is set by medical

requirements. Meanwhile, it is also important to properly manage the waiting time of non-urgent

patients, especially if they may leave without being seen when have waited for too long. Note that

it can be challenging to combine the waiting time for urgent and non-urgent patients into a single

objective, because it is difficult to quantify the relative costs of waiting between the two types of

patients. CMDP can also be applied when we want to improve upon an existing policy to optimize

a different performance metric. For example, we may have an existing policy that achieves a small

staffing cost, but we want to improve the service quality, which is measured by the average waiting

time. In this case, we can put the staffing cost under the current policy as a constraint, and try to

minimize the average waiting time subject to that constraint.

Given the wide range of applications, it is highly desirable to have an efficient solution method

for CMDPs. Due to the complicated system dynamics and the scale of the problems, exact optimal

solutions to CMDPs can rarely be derived analytically. Instead, numerical approximations become

the main workhorse to study CMDPs. In this paper, we propose a general data-driven primal-dual

algorithm for CMDPs. Our algorithm can be applied to both the model-based setting, where we

have direct access to the transition kernel of the underlying Markov chain, and the model-free

setting, where the system transition dynamics can only be estimated from data.

When we know the transition kernel explicitly, one classic approach to solving CMDP is based

on its linear programming (LP) formulations (Altman 1999). This approach works well when

the state space is relatively small. When dealing with large-scale problems, approximate linear

programming has been developed (Schweitzer and Seidmann 1985, De Farias and Van Roy 2003).

However, it requires the value function parameterization to be linear. More advanced approximation

techniques such as neural networks cannot be applied, which limits our ability to learn complicated

value functions. An alternative approach is to apply the Lagrangian duality. In particular, by

penalizing the constraints and utilizing strong duality, we can translate the CMDP into a max-

min problem (Altman 1999). This enables us to apply subgradient-based algorithms where we

iteratively update the policy and the Lagrangian multiplier. For a given Lagrangian multiplier,

the inner minimization problem is just an unconstrained Markov decision process (MDP), which

can be solved using standard dynamic programming (DP) techniques. The Lagrangian duality

approach can be applied to both the model-based and model-free settings. When solving large-scale

MDPs using policy/value iteration or policy gradient, we can apply a wider range of approximation

techniques. However, the existing method requires solving the MDP to obtain the optimal policy

for each updated Lagrangian multiplier (see, for example, Le et al. (2019), Miryoosefi et al. (2019)),

i.e., we have to solve multiple MDPs, which can be computationally costly and unnecessary.
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Our algorithmic development builds on a combination of the primal-dual update and mirror

descent framework (Nemirovski 2004). This allows us to do only a single policy evaluation at each

iteration instead of solving the MDP. In particular, for each primal update, we only need to execute

one round of regularized policy iteration. The mirror descent framework also allows us to establish

neat finite-time performance bounds. We show that the objective function and constraints converge

at rate O(1/
√
T ) where T is the number of primal-dual updates. Compared to existing algorithms,

our primal-dual algorithm enjoys a much lower computational cost at each iteration (since we

only need to do a policy evaluation rather than a policy optimization), while achieving the same

convergence rate (Le et al. 2019, Miryoosefi et al. 2019). Our algorithm and convergence analysis

applies to both the accumulated discounted cost and long-run average cost formulations. The

mirror descent framework also allows us to establish performance bounds when the value function

and policy function are estimated with errors.

We apply our primal-dual algorithm to solve two important classes of operations management

problems: queue scheduling and inventory planning. For queue scheduling, we first consider a two-

class queue motivated by ED operations, where we want to minimize the queue length (waiting

time) of one class while making sure that the queue length of the other class does not exceed a

certain threshold (Girard et al. 2020). We demonstrate through this relatively simple example that

our algorithm learns the optimal policy. We also consider a multi-class multi-pool parallel-server

system motivated by hospital inpatient flow management, where the decision-maker needs to route

different classes of customers to different pools of servers to minimize the total waiting cost while

maintaining a certain constraint on the number of mismatches between customers and servers (Dai

and Shi 2019). Value function approximation with the quadratic basis is applied to handle the large

state space. The policy learned by our algorithm achieves 5% - 18% cost reductions compared to

well-known benchmark methods in the literature, such as the modified cµ-rules and max-pressure

policies (Chen et al. 2020).

For inventory planning, we focus on the multi-product multi-period setting with a weakly coupled

structure (Singh and Cohn 1998), and show that our primal-dual algorithm can achieve dimension

reduction through sub-problem decomposition. We demonstrate through a simple two-product

newsvendor problem with a storage space constraint that our algorithm converges at the theoretical

rate. We then consider more challenging problems with perishable goods and stochastic lead times.

The goal is to minimize the holding and fixed order cost while making sure that the lost sale

does not exceed a certain threshold. To handle the large state space, we apply neural networks to

approximate the Q-function and policy. The policy learned our algorithm achieves 19% - 32% cost

reductions compared to the modified (s,S) policies, which is known to be near optimal for special

cases of the problem (Scarf 1960, Iglehart 1963).
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1.1. Main contributions

Our main contributions are twofold. First, we develop a data-driven primal-dual algorithm to solve

CMDPs. The algorithm and our development have several advantages. First and foremost, the

algorithm achieves O(1/
√
T ) convergence rate and only requires a single regularized policy iter-

ation (which is essentially a policy evaluation) at each primal update. Second, it can be applied

to both the accumulated discounted cost and long-run average cost formulations and achieves the

same convergence rate. Third, our algorithm can also be easily combined with other approximate

dynamic programming techniques, including nonlinear parameterization, to solve large-scale prob-

lems with unknown transition probabilities. We also quantify the effect of approximation errors on

the convergence rate. Lastly, the primary-dual update leads to a natural decomposition of weakly

coupled CMDPs, such that further reduction of computational complexity is possible.

Second, we demonstrate how to apply our algorithm to solve large-scale multi-class queue

scheduling and multi-product inventory management problems. Several recent engineering devel-

opments, including choosing good basis functions for value function approximation and conducting

efficient policy evaluation utilizing the special structure of the problem, can be easily adapted to

our algorithm. For the multi-class multi-pool queue scheduling problem, we find that quadratic

basis combined with the least-square temporal difference algorithm for policy evaluation works

well. This generalizes the insights from Dai and Shi (2019) to the CMDP setting. For multi-product

inventory management with perishable goods and stochastic lead times, we need to use neural

networks to approximate the Q-function and policy. It is also important to initialize the training

with a good exploration policy. In all problems tested, the policies learned by our algorithm achieve

significant cost savings compared to the state-of-art benchmark heuristics.

1.2. Related literature

In terms of the problem formulation, multi-objective sequential decision-making problems has

received considerable attention recently (see, e.g., Hayes et al. (2022) for a survey on multi-objective

reinforcement learning). Existing approaches can be roughly divided into two categories: single-

policy and multiple-policy. The single-policy approach focuses on finding the optimal policy for

a given preference weight, which translate multiple objectives into a single one (Tesauro et al.

2007, Mannor and Shimkin 2001). The multi-policy approach aims to identify a set of policies

that characterizes the Pareto frontier (Natarajan and Tadepalli 2005, Yang et al. 2019, Zhou et al.

2020). The CMDP formulation can be viewed as a special case of the second approach, where we

optimize one objective while “fixing” the values of the other objectives. In this work, we focus

on CMDPs with linear expectation constraints. Other forms of constraints are also studied in the

literature, mostly for MDPs. For example, Miryoosefi et al. (2019) consider the feasibility problem
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where the expected costs need to be within a convex set. Chow et al. (2017) study MDPs with

chance constraints.

Most existing algorithms for CMDPs can be divided into three categories: LP based, dynamic

programming (DP) based, and policy gradient (PG) based. Many recent developments on LP based

methods focus on large-scale problems and try to exploit the special problem structures. For exam-

ple, Bertsimas and Orlin (1994) use the ellipsoid method to derive efficient algorithms for problems

with side constraints, including the traveling salesman and vehicle routing problems. Neely (2011)

studies a linear fractional programming method to solve CMDPs. More recently, Caramanis et al.

(2014) propose two algorithms based on column generation and generalized expert’s framework.

One limitation of these LP based methods is that explicit knowledge of the transition kernel is

required. For MDPs (without constraints), Chen and Wang (2016) reformulate the LP as a saddle

point problem and use stochastic approximation to solve it. Lee and He (2019) propose a model-

free off-policy algorithm based on an LP formulation of Q-learning. Lin et al. (2020) combine

the Approximate LP (ALP) with proximal stochastic mirror descent. There are limited develop-

ments for CMDPs. In addition, ALP requires linear parameterization. More advanced nonlinear

parameterizations such as neural networks cannot be directly applied.

The DP based methods, including policy iteration and value iteration, penalize the constraints

via Lagrangian multipliers. Topaloglu (2009) applies the subgradient optimization method to find a

good set of Lagrangian multipliers. Brown and Smith (2020) use a cutting plane method to solve for

the optimal Lagrangian multipliers. Both papers consider finite-horizon CMDPs (as a relaxation of

weakly-coupled MDPs) with explicitly known transition kernels, and assume that the subgradient,

which corresponds to solving the penalized MDP at a given Lagrangian multiplier, can be evaluated

exactly. One of the advantages of DP based methods is that the value function can be estimated

via data, i.e., we do not need to know the transition kernel explicitly. For example, Gattami (2019)

formulates the CMDP as a zero-sum game and applies a primal-dual Q-learning algorithm in the

model-free setting. Singh and Kumar (2018) develop a two-timescale stochastic approximation

algorithm where the policy is updated with a much large step-size than the Lagrangian multiplier.

These papers only establish an almost sure convergence. Le et al. (2019) study CMDPs in the

offline learning setting, and combine various approximate dynamic programming techniques with

subgradient descent to solve it. Miryoosefi et al. (2019) consider the feasibility problem with a

convex target set. An O(1/
√
T ) convergence rate is obtained in both Le et al. (2019) and Miryoosefi

et al. (2019). However, these algorithms require fully solving the penalized MDP at each updated

Lagrangian multiplier. Our method can be viewed as an improved version of Le et al. (2019), since

we only require a policy evaluation at each iteration while achieving the same convergence rate.
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A common challenge in solving CMDPs is the curse of dimensionality. The PG based methods

tackle this challenge by parameterizing the policies. In this line, Borkar (2005) and Bhatnagar

and Lakshmanan (2012) combine actor-critic algorithms and Lagrangian duality to solve CMDPs.

Tessler et al. (2018) develop a two-timescale stochastic approximation algorithm, and Chow et al.

(2018) use Lyapunov functions to handle the constraints. Note that for PG based methods, the cor-

responding optimization problems are typically nonconvex. Thus, in most cases, only convergence

to a local minimum can be guaranteed and the convergence rates are largely unknown.

From the application’s perspective, our work is related to works that develop numerical algo-

rithms to solve queue scheduling and inventory management problems. For queue scheduling,

Veatch (2005), Moallemi et al. (2008), and Dai and Shi (2019) consider temporal difference learn-

ing algorithms and combine them with appropriate value function approximations. More recently,

Dai and Gluzman (2020) use policy gradient combined with deep neural network approximation

for queue scheduling problems under the long-run average cost formulation. For inventory man-

agement, many papers study ALP based algorithms (see, for example, Topaloglu and Kunnumkal

(2006), Sun et al. (2014), Nadarajah et al. (2015), Lin et al. (2020)). The performance of ALP

algorithms relies heavily on the choice of good basis functions. With the development of deep learn-

ing, there is also a growing body of literature applying deep reinforcement learning for inventory

management problems (see Van Roy et al. (1997) for one of the earliest work). More recent devel-

opments include Gijsbrechts et al. (2021), which investigates various policy gradient methods for a

single product newsvendor problem; Oroojlooyjadid et al. (2022), which applies deep Q-learning to

the beer game. Most of these papers focus on the classic MDP formulation. Our work complements

the existing literature by extending the algorithmic development to CMDPs.

1.3. Paper organization and notations

The rest of the paper is organized as follows. In Section 2, we first introduce the basic setup and

review some classic results that are relevant to our subsequent developments. We then present our

algorithm in Section 3, and show that the algorithm achieves O(1/
√
T ) convergence rate in Section

4. In Section 5, we extend our algorithm to the reinforcement learning setting where the transition

dynamic is not known explicitly but can be learned from data. We also quantify the convergence

rate when there are approximation errors. In Sections 6 and 7, we demonstrate how to apply our

algorithm to queue scheduling and inventory management problems. Lastly, we conclude the paper

and discuss some future research directions in Section 8.

The following notations are used throughout the paper. For a positive integerK, we denote [K] as

the set {1,2, . . . ,K}. For a vector λ∈RK , [λ]k denotes its k-th coordinate and ∥λ∥= (
∑K

k=1[λ]
2
k)

1/2

denotes its L2 norm. Given two vectors a, b ∈RK , we say a≤ b if the inequality holds coordinate-

wise, i.e., [a]k ≤ [b]k ∀k ∈ [K]. Given a vector x ∈ RK , [x]+ = (max{[x]1,0}, . . . ,max{[x]K ,0}).
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Finally, given two sequences of real numbers {an}n≥1 and {bn}n≥1, we say bn =O(an), bn =Ω(an),

and bn =Θ(an) if there exist some constants C,C ′ > 0 such that bn ≤Can, bn ≥C ′an, and C
′an ≤

bn ≤Can, respectively. We also introduce the Õ(·) notation when we ignore the logarithmic factors

on O(·). For example, if bn ≤Can log(n), we can write bn = Õ(an).

2. Constrained Markov Decision Process

We start by introducing the discrete-time MDP with discounted costs. It is characterized by the

tuple (S,A, P, c, γ,µ0). Here, S and A denote the state and action spaces; P = {P (·|s, a)}(s,a)∈S×A

is the collection of probability measures indexed by the state-action pair (s, a). For each (s, a),

P (·|s, a) characterizes the one-step transition probability of the Markov chain conditional on being

in state s and taking action a. The function c= {c(s, a)}(s,a)∈S×A is the expected instantaneous cost,

where c(s, a) is the cost incurred by taking action a at state s. Lastly, γ ∈ (0,1) and µ0 = {µ0(s)}s∈S

are the discount rate and the distribution of the initial state, respectively. Given an MDP, a policy

π determines what action to take at each state. We define the expected cumulative discounted cost

with initial state s0 under policy π as

V π(s0) = (1− γ) ·Eπ
[ ∞∑

t=0

γt · c(st, at)
∣∣s0], (1)

where st, at are the state and action at time t and Eπ denotes the expectation with respect to the

transition dynamics determined by policy π. We further weight the costs according to the initial

state distribution and define

C(π) =Es0∼µ0

[
V π(s0)

]
. (2)

Our goal is to minimize the cost C(π) over a properly defined class of policies.

As an extension to MDP, CMDP optimizes one objective while keeping others satisfying certain

constraints. Specifically, in addition to the cost c, we introduce K auxiliary instantaneous costs

dk = {dk(s, a)}(s,a)∈S×A,∀ k ∈ [K]. Then, the CMDP aims to find a policy that minimizes the cost

defined in (2) while keeping the following constraints satisfied (Altman 1999)

Dk(π) = (1− γ) ·Es0∼µ0

[
Eπ
[ ∞∑

t=0

γt · dk(st, at)
∣∣s0]]≤ qk, ∀ k ∈ [K]. (3)

To be concise, we define D(π) := (D1(π), . . . ,DK(π))
⊤, q := (q1, . . . , qK)

⊤, and write the constraints

in (3) as D(π)≤ q.

We also consider MDPs with the long-run average cost. Under policy π, the long-run average

cost is defined as

C(π) = lim
T→∞

1

T
Eπ
[ T−1∑

t=0

c(st, dt)|s0
]
. (4)
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With a slight abuse of notation, throughout the paper, we use the same notations for both the

discounted and long-run average cost formulations. The actual formulation should be clear from

the context. For technical tractability, we also assume the limit in (4) exists and does not depend

on the initial state s0. Moreover, there exists a function V π(·) such that

Eπ
[ T−1∑

t=0

c(st, dt)|s0
]
=C(π) ·T +V π(s0)+ o(T ).

V π(s) satisfies the following Poisson equation

C(π)+V π(s) =
∑
a∈A

(
c(s, a)+

∑
s′∈S

V π(s′)P (s′|s, a)
)
·π(a|s). (5)

It is often referred to as the relative value function, and plays a similar role as equation (1) for

MDPs with discounted cost. Note that the solution to the Poisson equation (5) is unique up to

a constant, i.e., shifting V π(s)’s by a common constant remains a valid solution. In subsequent

convergence analysis, we pick the solution with
∑

s∈S V
π(s) · νπ(s) = 0, where νπ is the stationary

measure of the Markov chain under policy π. For a CMDP with instantaneous auxiliary costs

dk(s, a), the long-run average auxiliary costs are defined as

Dk(π) = lim
T→∞

1

T
Eπ
[ T−1∑

t=0

dk(st, dt)|s0
]
, ∀k ∈ [K]. (6)

Then, we aim to solve

min
π

C(π), s.t. Dk(π)≤ qk, ∀k ∈ [K].

We remark that CMDP is only one modeling choice to study sequential decision problems with

multiple objectives/constraints. This particular modeling choice turns out to enjoy a lot of analyt-

ical and computational tractability as we will discuss next.

2.1. Policy Spaces

Solving CMDPs requires finding the optimal policy over a properly defined policy space, which

is a function space. Imposing suitable regularity conditions on the policy space facilitates the

development of efficient computational algorithms. We next introduce some commonly used policy

classes. It is natural to require that all policies are non-anticipative, which means that the decision-

maker does not have access to future information. Define the history at time t to be the sequence

of previous states and actions as well as the current state, i.e., ht := (s0, a0, . . . , at−1, st). Then a

non-anticipative policy can be viewed as a mapping from ht and t to the action space. We refer

to such a policy as a “behavior policy”. If a policy only depends on the current state st and time

t instead of the whole history ht, it is called a “Markov policy”. For a Markov policy, if it is
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independent of the time index t, it is referred to as a “stationary policy”. When a stationary policy

is a deterministic mapping from the state space to the action space, it becomes a “stationary

deterministic policy”. We use Π, ΠM , ΠS, ΠD to denote the space of behavior, Markov, stationary,

and stationary deterministic policies, respectively.

Given a policy space U , we can further extend it by allowing initial randomization, which is

referred to as the “mixing policy”. More precisely, let ρ be a probability measure defined on the

σ-algebra generated by U . Here we implicitly assume the existence of a σ-algebra (see Section

6.3 of Altman (1999) for a detailed construction). To execute a mixing policy on U with initial

randomization ρ, the decision-maker first uses ρ to sample a policy πg ∈U and then proceeds with

that policy for the entire horizon. We denote by M(U) the space of mixing policies constructed

from U . An important special case isM(ΠS), i.e., the space of mixing stationary policies. Note that

the cost under the mixing policy is simply a weighted average of costs under individual policies in

the mixing, and the weight corresponds to the initial randomization. To see this, consider a simple

example where U = {π1, π2}. For π ∈M(U) with initial probability ρ= (ρ1, ρ2), we have

C(π) = ρ1C(π1)+ ρ2C(π2).

When solving CMDPs, considering the mixing policy space would greatly facilitate our algorithmic

development and analysis. Many existing works on CMDP algorithms also consider the mixing

policy space (see, for example, Le et al. (2019), Miryoosefi et al. (2019)). We will explain this in

more detail in Section 3.

Finally, a class of policies U is called a “dominating class” for a CMDP, if for any policy π ∈Π,

there exists a policy π̄ ∈U such that

C(π̄)≤C(π) and Dk(π̄)≤Dk(π), ∀ k ∈ [K].

When the instantaneous costs c(·, ·) and dk(·, ·) are uniformly bounded from below, ΠS is dominat-

ing. The class of mixing stationary policiesM(ΠS) is also dominating (Theorem 3.1 and Theorem

8.4 in (Altman 1999)).

2.2. LP Based Approaches to Solving CMDPs

In this section, we introduced the LP formulations of CMDPs. LP based algorithms are model-

based, which are quite different from our proposed approach. However, we utilize some of the

concepts in the LP formulations in our development. To be concise, we only discuss CMDPs with

discounted costs here. Similar results hold for the long-run average cost formulation as well (see

Chapter 4 of Altman (1999)).
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Traditionally, there are two LP formulations of CMDPs. The first utilizes the occupation measure.

Given a policy π, the occupation measure is defined as

νπ(s, a) := (1− γ) ·Es0∼µ0

[ ∞∑
t=0

γtP̄ π(st = s, at = a|s0)
]
, ∀ (s, a)∈ S ×A, (7)

where P̄ π(·, ·|s0) denotes the probability measure induced by policy π starting from state s0. Note

that the occupation measure is the weighted long-run proportion of time the system spends at each

state-action pair. Due to discounting, it depends on the initial distribution µ0. By the definition of

νπ(s, a), we can express the discounted costs in (2) and (3) as

C(π) =
∑

(s,a)∈S×A

c(s, a) · νπ(s, a), Dk(π) =
∑

(s,a)∈S×A

dk(s, a) · νπ(s, a), ∀ k ∈ [K]. (8)

Let Q denote the set of feasible occupation measures, i.e., for any occupancy measure ν ∈Q, there
exists a policy π that leads to ν (Theorem 3.2 in Altman (1999)). The set Q can be represented

as the collection of vectors {ν(s, a)}(s,a)∈S×A that satisfies the following system of linear equations:∑
(s,a)∈S×A

ν(s, a)
(
1(s= s′)− γP (s′|s, a)

)
= (1− γ) ·µ0(s

′), ∀ s′ ∈ S, (s, a)∈ S ×A, (9)

and ∑
(s,a)∈S×A

ν(s, a) = 1, ν(s, a)≥ 0, ∀ (s, a)∈ S ×A, (10)

where 1(·) is the indicator function. This characterization gives rise to an occupation measure based

LP formulation of CMDP:

min
ν

∑
(s,a)∈S×A

c(s, a) · ν(s, a)

s.t.
∑

(s,a)∈S×A

dk(s, a) · ν(s, a)≤ qk, ∀ k ∈ [K]

equations (9) and (10).

The second formulation utilizes Lagrangian duality, which is the basis of our primal-dual algo-

rithm as well. We penalize the constraints with λ∈RK and define the Lagrangian

L(π,λ) :=C(π)+
K∑

k=1

[λ]k · (Dk(π)− qk). (11)

Then, the CMDP can be equivalently formulated as infπ∈ΠS
supλ≥0L(π,λ). When the state and

action spaces are finite, we can exchange the order of inf and sup (Theorem 3.6 in Altman (1999)),

i.e., infπ∈ΠS
supλ≥0L(π,λ) = supλ≥0 infπ∈ΠS

L(π,λ). Note that for each fixed λ, infπ∈ΠS
L(π,λ) is an

unconstrained MDP with instantaneous cost c(s, a)+
∑K

k=1 λkdk(s, a). The optimal value function

V ∗
λ (·) to problem infπ∈ΠS

L(π,λ) satisfies the Bellman equation:

V ∗
λ (s) =min

a∈A
(1− γ) ·

(
c(s, a)+

K∑
k=1

λk · dk(s, a)
)
+ γ ·

∑
s′∈S

V ∗
λ (s

′)P (s′|s, a), ∀s∈ S.
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We can use a system of linear inequalities to represent the Bellman equation. Moreover, since

L(π,λ) is linear in λ, we obtain the following Lagrangian dual based LP formulation of CMDP:

max
V ∗
λ
,λ

∑
s∈S

µ0(s)V
∗
λ (s)−

K∑
k=1

λkqk

s.t. V ∗
λ (s)≤ (1− γ) ·

(
c(s, a)+

K∑
k=1

λk · dk(s, a)
)
+ γ ·

∑
s′∈S

V ∗
λ (s

′)P (s′|s, a),

∀s∈ S,∀a∈A, λk ≥ 0, ∀k ∈ [K].

Various methods have been developed in the literature to solve the LPs introduced above more

efficiently (see, for example, Bertsimas and Orlin (1994), Caramanis et al. (2014)). However, there

are two main obstacles to LP-based approaches. First, it can be computationally prohibitive when

dealing with a large state or action space. Second, it requires explicit characterization of the

transition kernel P . To overcome these difficulties, we next develop a primal-dual algorithm that

is data-driven and can be easily adapted to solve large-scale problems.

3. The Primal-Dual Algorithm

Consider the Lagrangian dual problem

sup
λ≥0

inf
π∈ΠS

L(π,λ). (12)

For each fixed λ, the inner problem is an unconstrained MDP. A natural idea is to solve the

unconstrained MDP via a data-driven method and then update the Lagrangian multipliers via

subgradient ascent. Such an idea is explored in (Le et al. 2019). However, this method is compu-

tationally expensive, since we need to solve a new MDP every time the Lagrangian multipliers are

updated. In contrast, our method only requires a policy evaluation at each iteration.

We develop the algorithm and analyze its convergence inM(ΠS), the space of mixing stationary

policies. The benefits of allowing the mixing are twofold. First, it provides an intuitive way to

understand strong duality:

inf
π∈M(ΠS)

sup
λ≥0

L(π,λ) = sup
λ≥0

inf
π∈M(ΠS)

L(π,λ). (13)

With the mixing operation, we can treat C(π) and D(π) as linear functions with respect to the

initial randomization. To see this, recall the simple example where U = {π1, π2}. For π ∈M(U) with

mixing probability ρ= (ρ1, ρ2), C(π) = ρ1C(π1)+ρ2C(π2), which is as a linear function of ρ1 and ρ2.

Minimizing C(π) is essentially minimizing over (ρ1, ρ2) with ρ1, ρ2 ∈ [0,1], ρ1+ρ2 = 1. In general, U

may contain infinitely many policies. Then, the Lagrangian L(π,λ) is infinite-dimensional bilinear

(with respect to the Lagrangian multiplier λ and the mixing probability ρ) and strong duality

follows from the minimax theorem (Sion et al. 1958).
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Second, in primal-dual algorithms, we in general need to take the average of the trajectories

to obtain convergence (Nedić and Ozdaglar 2009). In our case, caution needs to be taken when

defining the average. Note that the objective and constraints are inner products of the costs and

the occupation measure (as in (8)). The Lagrangian L(π,λ) is also linear with respect to the

occupation measure. Thus, what we need to take the average over are the occupation measures.

Since the mapping from a policy to the corresponding occupation measure is not linear, we cannot

average the policies directly, e.g., by averaging πi(a|s)’s for each (s, a) pair. However, the mixing

operation provides a straightforward way to average the occupation measures. For example, when

U = {π1, π2}, for π ∈M(U) with mixing probability ρ= (ρ1, ρ2), ν
π(s, a) = ρ1ν

π1(s, a)+ρ2ν
π2(s, a).

In addition, note that for CMDPs with finite state and action spaces, given a mixing policy, there

exists a non-mixing stationary policy that has the same occupation measure (Theorem 3.1 of

Altman (1999)). (See, also, Chapter 6 and 10 of Altman (1999) for more general results when the

state space is infinite.) In particular, for π ∈M(ΠS), let ν
π(·, ·) be the corresponding occupation

measure. Then, we can construct an “equivalent” stationary policy π̃ via

π̃(a|s) = νπ(s, a)∑
a∈A ν

π(s, a)
. (14)

Our algorithmic development is based on strong duality (13), which holds under certain regularity

conditions (see Section 4 for details). By the minimax theorem, there exists a saddle point (π∗, λ∗)

such that

L(π∗, λ)≤L(π∗, λ∗)≤L(π,λ∗), ∀ λ∈RK
+ , π ∈M(ΠS). (15)

Moreover, π∗ is an optimal solution to the primal problem, λ∗ is an optimal solution to the dual

problem, and L(π∗, λ∗) equals to the optimal cost of the CMDP. The saddle point property (15)

suggests that we can use mirror descent to find the saddle point. The key in the application of

mirror descent is to choose the appropriate “distance function” (potential function) that is adapted

to the geometry of the problem.

We first consider CMDPs with discounted costs. For the primal policy update, the policy π(·|s)

at a given state s is a probability measure over the action space. In this case, we use KL divergence

at each state as the state-wise potential function, which gives rise to a regularized policy iteration.

For a given λ, the inner inf-problem in supλ≥0 infπ∈M(ΠS)L(π,λ) is an unconstrained MDP with

modified instantaneous cost

cλ(s, a) := c(s, a)+
K∑

k=1

[λ]k(dk(s, a)− qk).
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We refer to infπ∈M(ΠS)L(π,λ) as the modified unconstrained MDP. For a given policy π and

Lagrangian multiplier λ, define

Qπ,λ(s, a) := (1− γ) ·
(
cλ(s, a)+Eπ

[ ∞∑
t=1

γtcλ(st, at)
∣∣s0 = s, a0 = a

])
, (16)

which is known as the action-value function or Q-function under policy π. Let πm and λm denote

the policy and Lagrangian multiplier obtained at iteration m. For each state s∈ S, the regularized

policy iteration is defined as

πm(a|s) = argmin
π(·|s)∈∆A

{〈
Qπm−1,λm−1(s, ·), π(·|s)

〉
+ η−1

m−1 ·KL
(
π(·|s)∥πm−1(·|s)

)}
, (17)

where ηm−1 > 0 is the stepsize that determines the magnitude of regularization. The minimization

is taken over the probability simplex ∆A := {π(·|s) : 0≤ π(a|s)≤ 1,
∑

a∈A π(a|s) = 1}.

For the dual Lagrangian multiplier update, we work with the squared Euclidean distance, which

gives rise to a projected subgradient ascent. Let ΛM denote a suitably bounded domain that

includes the dual optimal solution λ∗ in its interior. We will provide an explicit construction of ΛM

in (24) in Section 4. The projected subgradient ascent takes the form

λm =ProjΛM

{
λm−1 + ηm−1 · ∂λL(πm−1, λm−1)

}
, (18)

where ProjΛM
{·} denotes the projection (in L2-norm) onto ΛM .

In actual implementations, the regularized policy iteration can be re-written as

πm(·|s) =Z−1
m−1 ·πm−1(·|s) · exp

{
− ηm−1 ·Qπm−1,λm−1(s, ·)

}
, (19)

where Zm−1 is some normalizing constant. For the subgradient ascent update, we have

[
∂λL(πm−1, λm−1)

]
k
=Dk(πm−1)− qk. (20)

Both (19) and (20) can be evaluated/approximated using simulation or empirical data. In addi-

tion, we can apply advanced approximation techniques for policy evaluation, i.e., when evaluating

Qπm−1,λm−1 , to improve the scalability of the algorithm.

The output of the algorithm is a weighted average of the policies and Lagrangian multipliers

we obtain at each iteration. In particular, suppose that our algorithm runs T − 1 iterations and

generates a sequence {(πm, λm)}0≤m≤T−1. Then, we output a mixing policy and a Lagrangian

multiplier of the forms:

π̄T =
T−1∑
m=0

η̃mπm, λ̄T =
T−1∑
m=0

η̃mλm, where η̃m = ηm/
∑T−1

m=0 ηm. (21)
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The averaging is required for convergence, since the objective L(π,λ) is bilinear and does not

possess sufficient convexity. Counter-examples that fail to converge without averaging exist. The

summation in the definition of π̄T is interpreted as the mixing operation, i.e., it mixes policies

(π0, . . . , πT−1) with initial randomization (η̃0, · · · , η̃T−1). From π̄T , we can apply (14) to define a

non-mixing stationary policy that has the same occupancy measure.

We can easily extend the above development to CMDPs with long-run average costs. To apply

the iterative updates, we replace the Q-function in (16) with the relative action-value function,

which is defined as

Qπ,λ(s, a) = cλ(s, a)−Cλ(π)+
∑
s′∈S

V π,λ(s′)P (s′|s, a) (22)

where V π,λ is the solution to the Poisson equation induced by policy π:

Cλ(π)+V π,λ(s) =
∑
a∈A

(
cλ(s, a)+

∑
s′∈S

V π,λ(s′)P (s′|s, a)
)
·π(a|s), (23)

and Cλ(π) is the long-run average cost of the modified problem, i.e., with cost cλ(s, a). Similarly,

we replace Dk(π)’s with the long-run average auxiliary cost as defined in (6). Then, the algorithm

follows the same primal-dual updates as (18) and (19) at each iteration. The detailed primal-dual

algorithm is summarized in Algorithm 1.

4. Performance Analysis

In this section, we conduct the performance analysis of Algorithm 1. To demonstrate the main

idea, we start by assuming we can evaluate the Q-function, i.e., Qπ,λ(s, a), exactly. In Section 5, we

consider the case where the Q-function can only be estimated with error and establish performance

bounds that account for approximation errors.

Our analysis builds on mirror descent for the saddle point. First recall that the primal-dual

update builds on strong duality. For CMDPs with finite state and action spaces, strong duality

always holds (Theorem 3.6 in (Altman 1999)). However, when the state space is countably infinite,

we need more regularity conditions to ensure strong duality. One sufficient condition is that the

instantaneous costs of the CMDP are uniformly bounded from below (see Definition 7.1, Theorem

9.9, and Chapter 10.3 in (Altman 1999)):

Assumption 1. [Lower Bound of Instantaneous Costs] There exists a constant W such that for

all s∈ S, a∈A, and k= 1,2, . . . ,K,

c(s, a)>W, dk(s, a)>W.

To establish the convergence result, we also require Slater’s condition:
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Algorithm 1 Primal-Dual Algorithm to CMDPs

Input: pre-specified projection domain ΛM , stepsizes {ηm}m≥0, initial policy π0 and Lagrangian

multiplier λ0

for m= 1, . . . , T − 1 do

Update Lagrangian multipliers and policy asλm =ProjΛM

{
λm−1 + ηm−1 · ∂λL(πm−1, λm−1)

}
,

πm(·|s)∝ πm−1(·|s) · exp
{
− ηm−1 ·Qπm−1,λm−1(s, ·)

}
.

where [
∂λL(πm−1, λm−1)

]
k
=Dk(πm−1)− qk, ∀k ∈ [K],

and

• under discounted cost,

Qπ,λ(s, a) := (1− γ) ·
(
cλ(s, a)+Eπ

[ ∞∑
t=1

γtcλ(st, at)
∣∣s0 = s, a0 = a

])
;

• under long-run average cost,

Qπ,λ(s, a) = cλ(s, a)−Cλ(π)+
∑
s′∈S

V π,λ(s′)P (s′|s, a),

where V π,λ satisfies the Poisson equation

Cλ(π)+V π,λ(s) =
∑
a∈A

(
cλ(s, a)+

∑
s′∈S

V π,λ(s′)P (s′|s, a)
)
·π(a|s);

end for

Output: mixing policy

π̄T =
T−1∑
m=0

η̃mπm, where η̃m = ηm/
T−1∑
m=0

ηm.

Assumption 2. [Slater’s Condition] There exists some policy π̃ such that ∀1≤ k≤K,

Dk(π̃)< qk.

Slater’s condition ensures the existence of a finite and bounded optimal Lagrangian multiplier

(Chapter 5.2 of Boyd et al. (2004))

λ∗ = argmax
λ≥0

{
inf

π∈M(ΠS)
L(π,λ)

}
.

This condition is commonly assumed in the constrained optimization literature (Nocedal and

Wright 1999). For many practical problems, Slater’s condition holds naturally.
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Our last assumption is about the boundedness of “subgradient”, which regularizes the movement

of policies and Lagrangian multipliers at each iteration. Recall that in Algorithm 1, after applying

subgradient ascent for the Lagrangian multiplier, we project λ onto a bounded domain ΛM , which

is defined as

ΛM =
{
λ∈RK

+ : ∥λ∥ ≤M + r
}
, (24)

where M is an upper bound of ∥λ∗∥ and r > 0 is a slackness constant.

Assumption 3. [Bounded Subgradient] There exists some constant G > 0 such that for any

λ∈ΛM and policy π ∈M(ΠS), the following inequalities hold

∥∥∂λL(π,λ)∥∥≤G, sup
s∈S

sup
a∈A

∣∣Qπ,λ(s, a)
∣∣≤G.

SinceQπ,λ(s, a) is linear in λ, it is necessary to restrict λ to a bounded domain ΛM for Assumption

3 to hold. That is why we need the projection step in updating λ. Similar boundedness assumptions

are commonly required for primal-dual algorithms (Nedić and Ozdaglar 2009, Le et al. 2019). Note

that when the instantaneous cost functions c(·, ·) and dk(·, ·) are uniformly bounded or when the

state and action spaces are finite, Assumption 3 holds trivially.

Lastly, we comment that Slater’s condition (Assumption 2) not only guarantees the existence

and boundedness of λ∗, but also provides an explicit upper bound for ∥λ∗∥. In particular, let π̃ be

a Slater point (a policy that satisfies Slater’s condition). Then, we have

∥λ∗∥ ≤− C(π̃)− c̃
max1≤k≤K

{
Dk(π̃)− qk

} , (25)

where c̃≤C(π∗) is an arbitrary lower bound for the dual problem.

To establish convergence, we need to construct an appropriate potential function for the policy

update, which is also known as the distance function in mirror descent. Note that mirror descent

can be viewed as minimizing a linear approximation of the objective function and a distance based

penalty that prevents us from moving too far in each iteration.

Consider the state occupancy measure νπs induced by a policy π ∈ ΠS, where the subscript s

stands for state. For the discounted cost,

νπs (s) := (1− γ) ·Es0∼µ0

[ ∞∑
t=0

γtP̄ π(st = s|s0)
]
;

for the long-run average cost

νπs (s) = lim
T→∞

1

T
Eπ
[ T−1∑

t=0

1(st = s)|s0
]
.
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νπs in the long-run average formulation is also known as the stationary distribution of the Markov

chain under policy π. The KL-divergence between two stationary policies π1 and π2 weighted by

νπs is defined as

Φπ(π1∥π2) =Es∼νπs

[
KL
(
π1(·|s)∥π2(·|s)

)]
. (26)

When π1 and π2 are mixing policies, we first transform them to the equivalent stationary policies via

(14), and then define Φπ(π1∥π2) as the weighted KL-divergence between the equivalent stationary

policies. By definition, Φπ(π1∥π2) measures the discrepancy between two policies weighted by a

given state occupation measure. It connects the regularized policy iteration in (17), which is defined

state-wise, with a single objective, and serves as the potential function in our mirror descent

analysis. In our analysis, we use the weight corresponding to the state occupancy measure under

the optimal policy. However, note that the weight does not affect the policy updates, since the

regularized policy iteration is defined state-wise.

We are now ready to introduce the convergence result of our primal-dual algorithm. The violation

of constraints is measured by

∥∥[D(π̄T )− q]+
∥∥ :=( K∑

k=1

(
[Dk(π̄T )− qk]+

)2)1/2

. (27)

Theorem 1. (Convergence of Algorithm 1) Let Iγ = (1− γ) for discounted cost criterion and

Iγ = 1 for long-run average cost criterion. Under Assumptions 1-3, if the step size ηm =Θ(1/
√
m),

then there exist positive constants κ1 and κ2, such that∥∥[D(π̄T )− q]+
∥∥≤ ((M + r)2 +

9

8
G2κ2 log(T )+Φπ∗

(π∗∥π0)
) 1

rIγκ1

√
T
,

and

C(π̄T )−L∗ ≤
(9
8
G2κ2 log(T )+Φπ∗

(π∗∥π0)+
∥λ0∥2

2

) 1

Iγκ1

√
T
,

C(π̄T )−L∗ ≥−∥λ∗∥
(
(M + r)2 +

9

8
G2κ2 log(T )+Φπ∗

(π∗∥π0)
) 1

rIγκ1

√
T
,

where r is the slackness constant in (24). If the step size is constant ηm = η, then∥∥[D(π̄T )− q]+
∥∥≤ ((M + r)2 +

1

Iγ
Φπ∗

(π∗∥π0)
) 1

rTη
+
(
1+

1

8Iγ

)G2η

r

and

C(π̄T )−L∗ ≤
( 1

Iγ
Φπ∗

(π∗∥π0)+
∥λ0∥2

2

) 1

Tη
+

9G2η

8Iγ
,

C(π̄T )−L∗ ≥−∥λ∗∥
(
(M + r)2 +

1

Iγ
Φπ∗

(π∗∥π0)
) 1

rTη
−∥λ∗∥

(
1+

1

8Iγ

)G2η

r
.
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In Theorem 1, the constants κ1 and κ2 are chosen such that

T−1∑
m=0

ηm ≥ κ1

√
T and

T−1∑
m=0

η2m ≤ κ2 log(T ).

Since
∑T−1

m=0 1/
√
m=O(

√
T ) and

∑T−1

m=0 1/m=O(logT ), such constants exist and only depend on

ηm’s, i.e., they do not depend on other model parameters. The proof of Theorem 1 is deferred to

Appendix A.1.

Theorem 1 indicates that with decreasing stepsizes: ηm =Θ(1/
√
m), our primal-dual algorithm

achieves O(log(T )/
√
T ) convergence, i.e.,

∥∥[D(π̄T )− q]+
∥∥=O(log(T )/

√
T ) and |C(π̄T )−L(π∗, λ∗)|=O(log(T )/

√
T ).

For constant step sizes, ηm = η, our primal-dual algorithm converges to a neighborhood of the

optimum at rate O(1/T ), i.e.,

∥∥[D(π̄T )− q]+
∥∥=O(1/(ηT )+ η) and |C(π̄T )−L(π∗, λ∗)|=O(1/(ηT )+ η)

In this case, if we set η = Θ(1/
√
T ), we achieve O(1/

√
T ) convergence rate. These convergence

rates match those in Le et al. (2019), which requires solving the modified unconstrained MDPs to

optimal at each iteration.

We conclude this section by making a few comments about the bounds established in Theorem

1. First, it is unlikely to improve the convergence rate beyond Θ(1/
√
T ). This is because the dual

is a finite-dimensional concave optimization problem without strong concavity. The convergence

rate of the subgradient method in this case is lower bounded by Ω(1/
√
T ) (Bubeck 2014). Second,

although the discount factor does not affect the convergence rate, it affects the constant that goes

in front of the rate. In general, the larger the discount factor, the larger the constant, and the

long-run average case tends to have a larger constant than the discounted case. (Note that our

characterization of the constants is unlikely to be tight.) Third, although the slackness constant r

appears in the denominators only, the constant G, which is an upper bound of the subgradients,

grows linearly in r. In particular, by Assumption 3, G is determined by the shape of ΛM . Hence,

r cannot be set arbitrarily large. Second,

5. Extension to the Reinforcement Learning Setting

In Algorithm 1 and its performance analysis, we assume we can evaluate the Q-function exactly.

However, in practice, this can be hard to achieve when we are dealing with a large state or action

space, or in a model-free setting where the transition kernel is not known explicitly. In this section,

we combine our algorithm with reinforcement learning (RL) techniques to deal with large-scale
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problems with unknown transition dynamics. We also establish convergence results that take the

approximation errors into account. We focus on the online setting where we can interact with the

environment to collect data (costs and transitions), but our algorithm can be combined with offline

policy evaluation algorithms as well, in which only data generated by a behavior policy is available.

When dealing with a large state space, one commonly used approach is to approximate the Q-

function and policy π(a|s) by properly defined classes of parametric functions. For the policy, we

consider parameterizing its energy function fβ(s, a) where πβ(s, a)∝ exp{fβ(s, a)}. We denote by

G = {Qα(s, a) : α∈Rm} the parameterized Q-function class and F = {fβ(s, a) : β ∈Rn} the param-

eterized energy function class. For example, for linear parameterization, we assume Qα(s, a) =

α⊤ϕ(s, a) and fβ(s, a) = β⊤ψ(s, a), where ϕ(s, a) and ψ(s, a) are given feature functions. In this

case, F and G are linear spaces generated by the feature functions. G and F can also be nonlinear

function classes (nonlinear in α or β) such as those generated by deep neural networks.

In our primal-dual update, let πβm denote the policy obtained in the m-th iteration and λm

denote the Lagrangian multiplier at iteration m. For the dual update, note that Dk(πβm)’s can

be accurately evaluated using standard Monte-Carlo simulation, and these evaluations in general

do not suffer from the curse of dimensionality (we do not need to evaluate Dk(πβm) for each

state-action pair). We update the Lagrangian multiplier as

λm =ProjΛM
{λm−1 + ηm−1 · ∂λL(πβm−1

, λm−1)}.

For the policy update, when evaluating the Q-function induced by policy πβm−1
, we restrict to

the function class G and consider minimizing the mean squared Bellman error (Sutton and Barto

2018):

αm−1 = argmin
α

E
(s,a)∼ν

πβm−1

[(
Qλm−1

α (s, a)−
(
(1− γ)cλm−1(s, a)

+ γEs′∼P (·|s,a)[Ea′∼πβm−1
(·|s′)[Q

λm−1
α (s′, a′)]]

))2]
,

where ν
πβm−1 is the state-action occupancy measure induced by policy πβm−1

. Note that when

Q
λm−1
α =Qπβm ,λm−1 , the Bellman error is equal to zero. The above minimization problem can be

(approximately) solved using standard TD-learning algorithms. We provide one such algorithm in

Appendix C. Given the approximated Q-function Q
λm−1
αm−1 , we next update the policy. If we apply

the regularized policy iteration directly, we have

π(s, a)∝ πβm−1
(s, a) · exp

{
− ηm−1 ·Qλm−1

αm−1
(s, a)

}
.

This suggests that we would like to update βm such that fβm = fβm−1
− ηm−1 ·Q

λm−1
αm−1 . When G is a

linear space, we can set F = G and we have fβm−1
− ηm−1 ·Q

λm−1
αm−1 ∈F , which implies that fβm+1

=
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fβm−1
− ηm−1 ·Q

λm−1
αm−1 . However, when F ,G are nonlinear in their parameters, fβm−1

− ηm−1 ·Q
λm−1
αm−1

may no longer fall into F . In this case, we can project the ideal policy update onto F by minimizing

the mean-squared error:

βm = argmin
β

E
(s,a)∼ν

πβm−1

[(
fβ(s, a)− (fβm−1

(s, a)− ηm−1 ·Qλm−1
αm−1

(s, a))
)2]
.

In this step, we can also define the projection based on other metrics, but to simplify the anal-

ysis, we focus on the weighted L2 norm. We summarize our primal-dual algorithm with function

approximations in Algorithm 2.

Algorithm 2 Primal-Dual Algorithm with Function Approximation

Input: pre-specified projection domain ΛM , stepsizes {ηm}m≥0, initial policy πβ0 and Lagrangian

multiplier λ0

for m= 1, . . . , T − 1 do

Evaluate the subgradient

[
∂λL(πβm−1

, λm−1)
]
k
=Dk(πβm−1

)− qk, ∀k ∈ [K].

Update Lagrangian multipliers as

λm =ProjΛM

{
λm−1 + ηm−1 · ∂λL(πβm−1

, λm−1)
}
.

Update αm−1 as

αm−1 = argmin
α

E
(s,a)∼ν

πβm−1[(
Qλm−1

α (s, a)−
(
(1− γ)cλm−1(s, a)+ γEs′∼P (·|s,a)[Ea′∼πβm−1

(·|s′)[Q
λm−1
α (s′, a′)]]

))2
]
.

Update βm as

βm = argmin
β

E
(s,a)∼ν

πβm−1

[(
fβ(s, a)− (fβm−1

(s, a)− ηm−1 ·Qλm−1
αm−1

(s, a))
)2]
.

end for

Output: mixing policy

π̄T =
T−1∑
m=0

η̃mπβm , where η̃m = ηm/
T−1∑
m=0

ηm.

In Algorithm 2, due to parameterization, the approximated Q-function, Q
λm−1
αm−1 , can be differ-

ent from the true Q-function Q
πβm−1

,λm−1 . We next take the approximation errors into account
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and study the convergence of Algorithm 2. We start by introducing some assumptions. Our first

assumption is an analog to Assumption 3.

Assumption 4. [Bounded Approximated Subgradient] There exists a finite constant G> 0 such

that for any λ∈ΛM , policy π ∈M(ΠS),

sup
s∈S

sup
a∈A

∣∣Qλ
α(s, a)

∣∣≤G,
where Qλ

α is the best approximation of Qπ,λ.

Let the policy sequence generated by Algorithm 2 be (πβ0 , πβ1 , πβ2 , · · · ) and the approximated

Q-function sequence be (Qλ0
α0
,Qλ1

α1
,Qλ2

α2
, · · · ). The next assumption assumes that at every iteration,

the Q-function can be approximated well enough.

Assumption 5. [Upper Bound for Q-function Approximation Error] There exists a constant

ϵ > 0 such that for m = 0,1,2, · · · , the approximated Q-function Q
λm−1
αm−1 obtained in Algorithm 2

satisfies

E
(s,a)∼ν

πβm−1

[∣∣Qλm−1
αm−1

(s, a)−Qπβm−1
,λm−1(s, a)

∣∣]≤ ϵ.
Note that the approximation error can be affected by the richness of the function class G and

the sample size used for policy evaluation. When using fitted Q-evaluation, to achieve an ϵ-

approximation accuracy, the required sample size is O(ϵ−2) (Theorem 4.2 in Le et al. (2019)).

Our next assumption requires that parametrized policy space F is rich enough such that we can

always find an fβ that approximates the regularized policy iteration well.

Assumption 6. [Richness of the Parametrized Policy Space] There exists a constant δ > 0 such

that for m= 0,1,2, · · · , βm satisfies

E
(s,a)∼ν

πβm−1

[∣∣fβm(s, a)− (fβm−1
(s, a)− ηm−1 ·Qλm−1

αm−1
(s, a))

∣∣]≤ δ.
Note that Assumption 6 holds trivially with δ= 0 when G is a linear space and F = G.

Lastly, we impose a uniform upper bound for likelihood ratios of the occupancy measures for

technical tractability.

Assumption 7. [Bounded Likelihood Ratios] There exists a finite constant Cℓ, such that for

m= 0,1,2, · · · , ∥∥∥ dνπ∗

dνπβm

∥∥∥
∞
,
∥∥∥ dνπ∗

s

dν
πβm
s

∥∥∥
∞
,
∥∥∥dνπβm+1

dνπβm

∥∥∥
∞
≤Cℓ.

Assumption 7 requires that the occupancy measures at different iterations are not more concen-

trated than the occupancy measure under the optimal policy. In other words, the intermediate

policies πβm should be exploratory enough. This is required because when running Algorithm 2 and
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analyzing the approximation errors, we work with νπβm , while the target objective and constraints

are with respect to νπ
∗
. Assumption 7 allows us to apply proper change-of-measures to connect

the two. This assumption is also imposed in Liu et al. (2019), which applies mirror descent to

analyze the convergence of Trust Region Policy Optimization. Similar assumptions such as finite

concentrability coefficients are commonly used in the literature (Munos and Szepesvári 2008, Antos

et al. 2007, Farahmand et al. 2016).

With the above assumptions, we are ready to state the performance guarantee for Algorithm 2.

To highlight the key insights, we focus on the dependency on the stepsize η, iteration number T ,

and approximation errors ϵ, δ.

Theorem 2. (Convergence of Algorithm 2) Under Assumptions 1 – 7, when the stepsize is a

constant, ηm = η, the output of Algorithm 2 π̄T satisfies

∥∥[D(π̄T )− q]+
∥∥, ∣∣C(π̄T )−L∗

∣∣≤O(η+ 1

ηT
+ ϵ+

δ

η

)
.

The proof of Theorem 2 is in Appendix A.2. Note that compared with Theorem 1, the perfor-

mance bounds in Theorem 2 have two extra terms: ϵ and δ/η. The first one corresponds to the

approximation error of the Q-function; the second one is due to policy projection. Theorem 2 shows

that, with a constant stepsize, Algorithm 2 converges to a neighborhood of the optimal at rate 1/T .

The size of the neighborhood is affected by the stepsize η and two approximation errors: ϵ and δ.

However, it does not depend on T , which implies that the errors do not accumulate over iterations.

When setting η = Θ(1/
√
1/T + δ), we achieve the performance bound O(

√
1/T + δ + ϵ). When

δ= 0 (e.g., when using linear parameterization with F = G), we achieve O(1/
√
T ) convergence.

Lastly, we comment that convergence rate is the same whether the instantaneous costs are ran-

dom or deterministic. When instantaneous costs are random, c(s, a) and dk(s, a)’s are the expected

costs. The randomness in the instantaneous costs may affect the constant term in front of the

convergence rate of the algorithm and the sample size required when using Monte Carlo simula-

tion to estimate the Q-function. In addition, when using sampling-based method to estimate the

Q-function, a higher discount factor would in general lead to a higher sampling variance due to a

slower mixing rate of the underlying Markov chain (Dai and Gluzman 2020).

6. Application to Queue Scheduling

In this section, we apply our primal-dual algorithm to some queue scheduling problems motivated

by healthcare applications.
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6.1. ED Scheduling Problem

We first consider a relatively simple problem that is motivated by the hospital emergency depart-

ment (ED) and has been studied in (Girard et al. 2020) analytically. ED patients are in general

classified into different urgency/severity levels. It is important to ensure that urgent patients can

receive treatment in a timely manner to avoid adverse consequences. At the same time, it is also

important to properly manage the waiting time of non-urgent patients, especially when these

patients may leave the hospital without being seen. It is in general difficult to define/quantify

the relative weights between the waiting cost of urgent patients versus non-urgent patients. Thus,

following (Girard et al. 2020), we introduce a CMDP formulation for the scheduling problem where

we try to minimize the waiting time of one class while making sure that the waiting time of the

other class is below a certain threshold.

We consider a single server queue with two classes of patients, 1 and 2. Patients arrive to the

system according to Poisson processes with rates θ1 = 1 and θ2 = 0.7 respectively. The service

times are exponentially distributed with rates µ1 = 2 and µ2 = 1.5 respectively. The queue length

is truncated at 10 for each class. The goal is to minimize the long-run average queue length of

class 1 patients (which is equivalent to minimizing the long-run average waiting time) subject

to the constraint that the long-run average queue length of class 2 patients does not exceed the

threshold q = 1. Preemption is allowed. We apply Algorithm 1, where we use LP to calculate the

relative Q-function exactly for each updated policy. The exact optimal cost for this problem is

3.69. We use a constant stepsize of 0.25. After 20 iterations, the policy learned by our primal-dual

algorithm achieves a cost of 3.91 (optimality gap = 5%); after 100 iterations, the cost reduces to

3.74 (optimality gap = 1%); after 5000 iterations, the cost further reduces to 3.70 (optimality gap

= 0.2%). Figure 1 depicts the evolution of policies (the probability of serving a class-1 customer

given the current state) learned by our primal-dual algorithm and the optimal policy. We observe

that our primal-dual algorithm indeed learns the optimal policy.

6.2. Inpatient-flow Management Problem

In this section, we consider a more complicated queue scheduling problem where exact evaluation of

the relative Q-function is practically infeasible. The problem is motivated by hospital inpatient-flow

management (Dai and Shi 2019, Song et al. 2020, Dong et al. 2019).

Many hospitals partition inpatient ward beds into specialized units. Patients from different spe-

cialties in principle should receive treatment in their corresponding specialty wards, which are also

known as the primary wards. However, due to a high level of occupancy and high uncertainty in

patients’ demand, the primary wards may be at or near full capacity from time to time. In these

situations, to avoid excessive admission delays, the hospital may choose to place a patient in some
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Figure 1 Policy learned versus the optimal policy. The horizon axis represents the number of class 2 patients in

the system and the vertical axis is the number of class 1 patients in the system. Different colors represent

different probabilities of prioritizing the class 1 patients.

non-primary ward (overflow). While placing patients in non-primary wards can help reduce admis-

sion delay and balance the loads between different wards, there are also costs associated with it.

Most noticeably, overflow can lead to worse clinical outcomes (Song et al. 2020). It also imposes

additional inconvenience costs for nurses and physicians.

We model the inpatient-flow dynamics as an I× I queueing network where there are I classes of

customers (patients) and correspondingly I pools of primary servers. Pool i has Ni homogeneous

servers. We consider a discrete time model. In each period, the number of class i arrivals follows

a Poisson distribution with rate θi. The service time provided by a server from pool i follows a

geometric distribution with success probability µi. For each class i customer waiting in the queue,

we incur a holding cost of hi per unit time. For each class i customer being overflowed to a non-

primary pool j with j ̸= i, we incur an overflow cost of rij. Our goal is to minimize the long-run

average holding cost under the constraint that the long-run average overflow penalty does not

exceed a certain threshold. We focus on non-preemptive scheduling policies, i.e., once a customer

is assigned to a server, s/he stays there until service completion. Let Xi(t) denote the number of

class i customers in the queue at time period t and Uij(t) denote the number of class i customers

newly assigned to pool j at t. Then, the scheduling problem takes the form

min
π

lim
T→∞

1

T
·Eπ

[
T−1∑
t=0

I∑
i=1

hiXi(t)

]
(28)
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s.t. lim
T→∞

1

T
·Eπ

[
T−1∑
t=0

I∑
i=1

I∑
j=1

rijUij(t)

]
≤ q.

Note that we put overflow penalty as a constraint rather than part of the objective, because it is

hard to quantify how the cost of waiting compares to the cost of overflow.

When applying our primal-dual algorithm to solve (28), the size of the state-action space grows

very fast as I or Ni grows. It can be computationally prohibitive to evaluate the relative action-

value function Qπ,λ(s, a) exactly. Indeed, even with I = 3, Ni = 10, if we truncate the queue at 30

for each class, we already have to evaluate O(109) different state-action pairs. To overcome this,

we use value function approximation with the quadratic basis and apply the least-square temporal

difference algorithm to estimate the optimal coefficients (see Appendix B for more details).

For this class of problems, the optimal policy is not known. Thus, we compare the performance

of the policy learned using our algorithm to some benchmark policies developed in the literature.

When considering the holding cost alone, one well-known policy is called the cµ-rule. The cµ-rule

or generalized versions of it have been shown to be asymptotically optimal in many parallel server

systems (PSS) (see, for example, Mandelbaum and Stolyar (2004)). Another important policy

is called the max-pressure policy, which is known to be throughput optimal for many queueing

networks (Dai et al. 2008). Overflow costs have been much less studied in the literature (see, for

example, Dai and Shi (2019)). To account for the overflow constraint, we propose the following

modified versions of the cµ-rule and max-pressure policy, respectively. Let Θ be a threshold for the

overflow cost per period, which is a tuning parameter. Then, for each t, consider Uij(t) that solves

max
I∑

i=1

I∑
j=1

ωij(t)Uij(t)

s.t.
I∑

i=1

I∑
j=1

rijUij(t)≤Θ,
I∑

j=1

Uij(t)≤Xi(t),
I∑

i=1

Zj(t)+Uij(t)≤Nj,Uij(t)≥ 0,

where Zj(t) is the number of patients in pool j before the new assignment in period t. When

ωij(t) = hiµj, we have the modified cµ-rule. When ωij(t) = hiXi(t)µj, we have the modified max-

pressure policy. We also consider a mixture of modified cµ-rules and modified max-pressure policies

with different values of Θ. Suppose there are K policies. The mixture weight p solves

min
p

K∑
k=1

pkC(πK) s.t.
K∑

k=1

pkD(πk)≤ q,
K∑

k=1

pk = 1, pk ≥ 0, (29)

where C(πk) is the long-run average holding cost of the k-th policy in the mixture and D(πk) is

its long-run average overflow cost.

We first consider a 2×2 network with 10 servers in each server pool. We truncate the queue at 30

for each class. Two scenarios are tested. In the first scenario, we set arrival rates θ1 = 8, θ2 = 3.5 and
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service rates µ1 = µ2 = 0.6, such that the first class is overloaded and the second class is underloaded.

The holding costs are h1 = 3, h2 = 1 and the overflow costs are r12 = r21 = 1. The budget for long-

run average overflow penalty is q = 1.5. In the second scenario, we consider a symmetric system

with arrival rates θ1 = θ2 = 5.5, service rates µ1 = µ2 = 0.6, holding costs h1 = h2 = 2, and overflow

costs r12 = r21 = 1. The budget for long-run average overflow penalty is q= 0.3.

The performance of different policies is summarized in Tables 1 and 2 for the two scenarios

respectively. The “optimal mixing” column denotes the mixing policy that solves (29). Comparing

the policy learned by our primal-dual algorithm (within 100 iterations) to the best-performing

benchmark policy – optimal mixing, our policy achieves a 18% cost reduction in scenario 1 (see

Table 1) and an 12% cost reduction in scenario 2 (see Table 2).

Table 1 Performance of different policies for a 2× 2 queuing network scheduling problem, scenario 1

benchmark type Θ= 1 Θ= 2 Θ= 3 Θ= 4 optimal mixing primal-dual

holding cost
cµ 60.9 45.9 31.2 24.2

39.6 33.0
max-pressure 60.8 46.2 32.1 24.5

overflow cost
cµ 0.87 1.51 1.83 1.96

1.50 1.50
max-pressure 0.87 1.52 1.84 1.96

Table 2 Performance of different policies for a 2× 2 queueing network scheduling problem, scenario 2

benchmark type Θ= 0 Θ= 1 Θ= 2 Θ= 3 optimal mixing primal-dual

holding cost
cµ 19.2 12.3 10.4 9.4

12.7 11.4
max-pressure 18.7 12.1 10.2 9.5

overflow cost
cµ 0 0.33 0.50 0.56

0.30 0.30
max-pressure 0 0.33 0.49 0.56

We also test a 3× 3 network with 10 servers in each server pool. The queue for each class is

truncated at 30. The system parameters are set as (θ1, θ2, θ3) = (2,4,10), (µ1, µ2, µ3) = (0.4,0.5,0.6),

(h1, h2, h3) = (1,2,3) r12 = r21 = r31 = 1, and r13 = r23 = r32 = 2. The overflow penalty budget is

q = 2. Note that if we are to evaluate the transition matrix P (·|s, a) in this case, we have O(109)

different (s, a) pairs. However, in our primal-dual algorithm, we only generate O(106) samples in

total. The performance of different policies is summarized in Table 3. The policy learned by our

primal-dual algorithm (within 15 iterations) achieves a cost reduction of 5% compared with the

best benchmark policy – optimal mixing.

7. Application to Inventory Planning

In this section, we apply the primal-dual algorithm to solve the multi-product multi-period inven-

tory management problems (we refer to Turken et al. (2012) for a comprehensive review of these

problems).
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Table 3 Performance of different policies for a 3× 3 queueing network scheduling problem

benchmark type Θ= 1 Θ= 2 Θ= 3 Θ= 4 optimal mixing primal-dual

holding cost
cµ 98.2 94.8 91.6 88.7

92.9 88.5
max-pressure 98.3 94.9 91.8 88.4

overflow cost
cµ 0.93 1.78 2.40 2.90

2.0 2.0
max-pressure 0.93 1.78 2.39 2.91

7.1. Weakly coupled CMDP

One important feature of many multi-product inventory management problems is a weakly coupled

structure, i.e., the problem can almost be decomposed into I sub-problems (I is often the number of

products) except for a linkage constraint (e.g., a finite storage space) that links these sub-problems

together (Turken et al. 2012). We consider weakly couple CMDPs (Singh and Cohn 1998), which

consists of I sub-problems {(Si,Ai, P i, ci(·, ·), γ,µi
0)}i∈[I] with the following properties:

P1) The state and action spaces can be expressed in the form of Cartesian products, i.e.,

s= (s1, . . . , sI), S = S1×S2× . . .×SI , a= (a1, . . . , aI), A=A1×A2× . . .×AI .

P2) For each state st and action at, the instantaneous cost and auxiliary costs admit an additively

separable form

c(st,at) =
I∑

i=1

ci(sit, a
i
t), d(st,at) =

I∑
i=1

di(sit, a
i
t).

P3) The joint initial distribution satisfies µ0(s) = µ1
0(s

1) · µ2
0(s

2) · . . . · µI
0(s

I) and the one-step

transition dynamic is of the form

P (st+1|st,at) =
I∏

i=1

P i(sit+1|sit, ait).

For the multi-product inventory management problem, when demands for different products are

independent, it naturally has a decomposable structure. However, constraints on a common storage

space or aggregated service quality measures create linkages across the products.

Our primal-dual algorithm can be easily adapted to allow decomposability for weakly coupled

CMDPs. We refer to a policy π as decomposable if it takes the product form π(a|s) =
∏I

i=1 π
i(ai|si),

i.e., the action for each product only depends on the inventory level of that product. Since our

algorithm converges with any initial policy, we shall start with a decomposable policy. Then,

when applying the primal-dual algorithm, the policies obtained in all subsequent iterations are

decomposable. To see this, let {st}t≥0 = {(s1t , . . . , sIt )}t≥0 and {at}t≥0 = {(a1t , . . . , aIt )}t≥0 be the

trajectory of the CMDP under a decomposable policy π= (π1, . . . , πI). For each i∈ [I], we define

Ci(πi) = (1− γ) ·Eπi

si0∼µi
0

[ ∞∑
t=0

γt · ci(sit, ait)
∣∣si0], Di(πi) = (1− γ) ·Eπi

si0∼µi
0

[ ∞∑
t=0

γt · di(sit, ait)
∣∣si0].
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Then, the objective and constraints in the CMDP become
∑I

i=1C
i(πi) and

∑I

i=1D
i(πi)≤ q, and

the Lagrangian is

L(π, λ) =
I∑

i=1

(
Ci(πi)+λ⊤Di(πi)

)
−λ⊤q.

Hence, the Q-function is also decomposable,

Qπm,λ(s, ·) =
I∑

i=1

Qπi
m,λ(si, ·), (30)

where Qπi
m,λ(·, ·) is the Q-function of the i-th modified sub-MDP with instantaneous cost ci(·, ·)+

λ⊤di(·, ·). (We ignore λ⊤q here because subtracting a common constant from the Q-functions does

not change the regularized policy iteration.) This further indicates that the regularized policy

iteration, including policy evaluation, can be implemented for each sub-problem in parallel via

πi
m+1(·|si)∝ πi

m(·|si) · exp
{
− ηm ·Qπi

m,λ(si, ·)
}
, ∀i∈ [I].

Moreover, for the subgradient of the Lagrangian multiplier, ∂λL(πm, λ) =
∑I

i=1D
i(πi

m) − q,

Di(πi
m)’s can be evaluated in parallel as well. As a result, the primal-dual algorithm improves the

computational complexity from exponential dependence on I to linear dependence on I.

We remark that a weakly coupled CMDP can also be viewed as a relaxation of a weakly coupled

MDP, where we replace the hard (path-by-path almost sure) constraints in the MDP with expecta-

tion constraints. It has been shown that the optimal cost of the relaxed problems provides a lower

bound for that of the original MDP (Adelman and Mersereau 2008). Our primal-dual algorithm

provides an efficient way to solve the weakly coupled CMDP. However, how to translate the optimal

policy for the relaxed problem to a good MDP policy that satisfies all the hard constraints is not

studied here and would be an interesting future research direction (see Topaloglu and Kunnumkal

(2006), Bertsimas and Mǐsić (2016), Brown and Smith (2020) for some recent developments).

7.2. Multi-Product Newsvendor Problem with a Storage Space Constraint

In this section, we study a relatively simple multi-period newsvendor problem with I products.

At the beginning of each period, we need to decide the quantities to order based on the current

inventory levels. New orders are filled immediately, and after the inventory is replenished, a random

demand is realized. Excess supply (inventory) or demand (backlog) is carried to the next period

with certain costs. We assume that demands for different products are independent and they are

identically distributed across different periods. For each product i ∈ [I], we denote its inventory

level at the beginning of period t by sit, the quantity we order as ait, and the demand in period t

as wi
t. If the demand does not exceed the current inventory level, i.e., wi

t ≤ sit + ait, all the demand

is fulfilled and the remaining inventory, (sit + ait − wi
t), is carried to the next period. Otherwise,
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only sit + ait units are met in the current period. The remaining (wi
t − sit− ait) units are carried to

the next period as backlog, i.e., we allow sit to be negative to represent backlog. For product i,

inventory incurs a holding cost of hi per unit per period and backlog incurs a backlog cost of bi

per unit per period. In addition, each unit in inventory consumes vi units of storage space.

Our goal is to minimize the cumulative discounted holding and backlog costs, while maintaining

a certain constraint on the total storage space. We model the storage space constraint as a soft

constraint that only needs to be satisfied on average, because in practice, temporary extra storage

space may be easy to obtain. Following the CMDP formulation, we have

min (1− γ) ·Eν0

[ ∞∑
t=0

I∑
i=1

γt[hi(s
i
t + ait−wi

t)
+ + bi(w

i
t− sit− ait)+]

]
s.t. (1− γ) ·Eν0

[ ∞∑
t=0

I∑
i=1

γtvi(s
i
t + ait)

+
]
≤ q.

(31)

This CMDP is weakly coupled with state s= (s1, . . . , sI), action a= (a1, . . . , aI), and transition

dynamics sit+1 = sit + ait − wi
t,∀i ∈ [I]. To see this, note that as the demands are independent

across products, i.e., P (st+1|st,at+1) =
∏I

i=1P (s
i
t+1|sit, ait+1). The instantaneous cost function and

auxiliary cost function are

c(st,at) =
I∑

i=1

hi · (sit + ait−wi
t)

+ + bi · (wi
t− sit− ait)+, d(st,at) =

I∑
i=1

vi · (sit + ait)
+,

which are additively separable.

We consider a small-scale setting with I = 2, and the demands for the two products are both

uniformly distributed on {1,2, . . . ,10}. We also truncate the state space at [−10,10]× [−10,10],
i.e., the inventory level cannot go above 10 and the backlog level can not go below −10. For the

backlog, when it drops below −10, the excess demands are lost without incurring any cost. For other

systems parameters, we set the holding costs h1 = 1, h2 = 2, backlog costs b1 = 2, b2 = 3, storage

space requirement v1 = 1.5, v2 = 1, storage space threshold q= 10, and discount rate γ = 0.75.

When implementing the primal-dual algorithm, we can use LP to evaluate the Q-function exactly

under a given policy. We implement two types of stepsize: a constant stepsize of 0.5 and decreasing

stepsize with ηm = 0.5/
√
m+1. We run 2000 iterations in total and calculate the objective values at

different iterations. Figure 2 plots averaged objective values and Lagrangian multipliers at differ-

ent iterations when we use a constant step size. We observe that after 2000 iterations, the averaged

CMDP cost is 10.55, which is close to the optimal value of 10.50. The averaged Lagrangian multi-

plier is 0.523, which is again close to the optimal value is 0.517. Figure 3 shows the relationships

between
∑T−1

t=0 η̃tC(πt) and the reciprocal of the number of iterations for constant stepsizes, and

the reciprocal of the square root of the number of iterations for decreasing stepsizes. In both cases,

we see straight lines, which confirm the convergence rates established in Theorem 1.
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Figure 2 Trajectories of the objective and Lagrangian multiplier when ηm = 0.5
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Figure 3 Convergence rate with constant and decreasing step sizes

7.3. Multi-Product Newsvendor Problem with Perishable Goods and Stochastic
Lead Time

In this section, we consider a large-scale newsvendor problem with perishable goods and stochastic

lead times. In particular, unsold goods need to be discarded when their shelf life expires. When

placing new orders, the replenished goods may arrive after a non-zero and random amount of

time. These two features substantially enlarge the state space of the problem and the optimal

replenishment and stocking policies are largely unknown.

Assume that there are N unique products. For each product, the maximal shelf life is P, and

the maximal lead time is L. We denote the state of the i-th product in period t as

sit = (I it(1), · · · , I it(P),Oi
t(1), · · · ,Oi

t(L)),

where I it(j) denotes the inventory level of product i that will expire in j periods, j = 1, · · · ,P;

Oi
t(k) denotes the order quantity of product i that was placed k periods ago and has not arrived

yet, k= 1, · · · ,L. If the order placed k periods ago arrived before t, then Oi
t(k) = 0. The lead times
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of different products are independent and have the same distribution (p0, p1, · · · , pL), where pk
denotes the probability that the order placed in period t will arrive in period t+k, k= 0,1, · · · ,L.

For the transition dynamics, at the beginning of period t, we first decide the quantity of new

orders at = (a1t , . . . , a
N
t ) based on the state st = (s1t , . . . , s

N
t ). Second, for each product i, we update

the inventory levels due to newly delivered orders. Let p̄k = pk/
∑L

j=k pj, k= 0, · · · ,L, i.e., it is the

probability that an order placed in period t− k which has not arrived yet will arrive in period t.

Let Ei
k denote a Bernoulli random variable with success probability p̄k. Then,

Ĩ it(P) = I it(P)+
L∑

k=1

Ei
k ·Oi

t(k)+Ei
0 · ait, and Ĩ it(k) = I it(k), k= 1, · · · ,P − 1.

Third, for each product i, we further update the inventory level based on the newly arrived demand

Di
t that is drawn from the distribution Di. When filling the demand, we prioritize goods with shorter

remaining shelf life. Algorithmically, we initialize the remaining demand Ri =Di and recursively

update inventory level from j = 1 to P as Ĭ it(j)← Ĩ it(j)−min{Ĩ it(j),Ri}, Ri←Ri−min{Ĩ it(j),Ri}.

Demands that are not fulfilled, (Di −
∑P

j=1 Ĩ
i
t(j))

+, are lost, and goods that expire, Ĭ it(1), are

discarded. Lastly, we set

I it+1(j) = Ĭ it(j+1), j = 1, · · · ,P − 1, I it+1(P) = 0,

Oi
t+1(k+1)=Oi

t(k) · (1−Ei
k), k= 1, · · · ,L− 1, Oi

t+1(1) = ait · (1−Ei
0),

as the state of product i in the next period sit+1.

In terms of cost, first, we assume each unit of product i in inventory incurs a holding cost of hi

per period. Second, when placing an order, a fixed order cost of fi is charged, which is independent

with the order quantity. Third, the perished product will incur a discarding cost of ri per unit.

Lastly, unfulfilled demands are lost forever at a penalty of ℓi per unit. We consider a CMDP

formulation. Our primary cost is the total operating cost that includes holding, fixed order, and

discarding costs, i.e.,

ci(sit, a
i
t) = hi ·

P∑
j=1

I it(j)+ fi · 1(ait > 0)+ ri · Ĭ it(1).

The auxiliary cost is the lost sale penalty, i.e.,

di(sit, a
i
t) = ℓi ·

(
Di−

P∑
j=1

Ĩ it(j)
)+

,

which captures the service quality. Then, the CMDP takes the following form

min
π

Eπ

[ N∑
i=1

∞∑
t=0

γt · ci(sit, ait)
]
, s.t. Eπ

[ N∑
i=1

∞∑
t=0

γt · ℓi · di(sit, ait)
]
≤ q.
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Since the optimal policy is unknown in this case and solving the CMDP exactly is compu-

tationally prohibitive, we adapt a classic heuristic developed in literature as the benchmark. In

particular, we consider the (s̃, S̃) policy: For each product, we place a new order and replenish its

total inventory level (including the upcoming orders) to S̃ if and only if its existing total inventory

level (including the upcoming orders) drops below s̃. This policy with properly chosen s and S

has been shown to be optimal for systems with non-perishable inventory and constant lead time

(Scarf 1960, Iglehart 1963, Veinott Jr and Wagner 1965). Since different (s,S) parameters lead to

different lost sale penalties and operating costs, we enumerate all possible (s,S) policies and seek

the optimal mixing policy such that the primary cost is minimized while the constraint is main-

tained. Specifically, let πω be an (s̃, S̃) policy with parameter ω= (s̃ω, S̃ω). We denote Cω and Dω

as the associated operating cost and lost sale penalty. Then, the optimal mixing policy is obtained

by solving

min
p

∑
ω∈Ω

pωCω s.t.
∑
ω∈Ω

pωDω ≤ q,
∑
ω∈Ω

pω = 1, pω ≥ 0,

where Ω is the collection of all feasible (s,S) parameters.

In our numerical experiments, we consider four problem instances with N = 20,100 distinct

products and averaged lost sale constraints (accumulated in time) q/N = 30,40 . For each product,

the unit holding costs and fixed order costs are uniformly sampled from intervals [0.5,1.5] and [2,4].

The unit lost sale penalty and discarding cost are fixed at 1 and 10 respectively for all products. The

discount factor γ is 0.95. For each product, the inventory level takes non-negative integer values,

and the action space is {0,1,2, · · · ,9}. The demand of each product follows a uniform distribution

over the set {1,2, · · · ,10}. The maximal shelf life is P = 5 and the maximal lead time is L= 4. For

the stochastic lead time, we set (p̄0, p̄1, p̄2, p̄3, p̄4) = (0.2,0.4,0.6,0.8,1). In this example, the number

of unique (s, a) pairs for each product is approximately O(1010), and the scale of the joint problem

is O(1012) when N = 100.

To overcome the curse of dimensionality, we apply an adapted version of Algorithm 2 where we

use neural networks to approximate the Q-functions and policies (we fit different neural networks

for different products). We initialize the neural networks via the Xavier initialization (Glorot and

Bengio 2010), the Lagrangian multiplier is initialized at zero, and the stepsize is fixed at 0.02.

In each primal-dual iteration, we use the stochastic gradient descent-based temporal difference

learning algorithm with 104 steps to find the approximated Q-function, and then use stochastic

gradient descent with 104 steps to find the approximated policy function. The implementation

details are provided in Appendix C.

Figure 4 plots the averaged primary objective values, C(πm)/N , and the averaged constrain

violation, (D(πm)− q)/N , at different iterations m. We observe that the lost sale penalty violates
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the constraint by quite a bit at the beginning. As the number of iterations increases, the constraint

violation reduces to zero. The primary cost first increases and then stabilizes. Table 4 compares the

policy learned by our primal-dual algorithm with 500 iterations and the optimal mixing (s̃, S̃) policy

(benchmark policy) in different scenarios. We observe that our policy achieves a 19%-32% cost

reduction compared to the benchmark policy while maintaining the constraint. This demonstrates

the superior performance of our primal-dual algorithm for large-scale CMDPs.
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Figure 4 Trajectories of objective and constraint violation

8. Conclusion and Future Directions

In this work, we propose a data-driven primal-dual algorithm to solve CMDPs. Our approach

alternatively applies regularized policy iteration to improve the policy and subgradient ascent to
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Table 4 Comparison of policies for the muli-product newsvendor problem

# of Products Average Threshold Primal-Dual Primal-Dual Benchmark
N q/N average penalty operating cost operating cost
20 30 29.6 74.2 91.6
20 40 39.8 46.1 63.6
100 30 30.3 61.4 89.4
100 40 40.1 42.3 62.6

maintain the constraints. The algorithm achieves O(1/
√
T ) convergence and only requires a policy

evaluation at each iteration. It can be easily combined with advanced reinforcement learning

techniques to deal with large-scale problems, with the added benefit of neat convergence analysis.

It also enjoys the decomposability property for CMDPs with weakly coupled structures, which can

help further reduce the computational complexity. Lastly, we apply our algorithm to solve two

important classes of operations management problems: multi-class queue scheduling and multi-

product inventory management. These applications demonstrate the scalability of our algorithm.

There are a few directions for future research. First, this work focuses on CMDPs with linear

expectation constraints. It would be of interest to extend the primal-dual algorithm to other forms

of constraints such as the auxiliary costs being in a convex set or chance constraints. The key

challenge in handling more general forms of constraints is how to solve the relaxed unconstrained

problem for a given Lagrangian multiplier. In our case, the relaxed problem is still an MDP, which

may not be the case for more general forms of constraints (Miryoosefi et al. 2019, Chow et al. 2017).

Second, to achieve better scalability, in addition to the weakly coupled structure explored in this

paper, it would also be of great value to look at other special problem structures such as sparse

networks (Gu et al. 2021) or latent low-rank structure (Sam et al. 2022). Third, as mentioned in

Section 7.1, weakly coupled CMDPs can be viewed as a relaxation of weakly coupled MDPs. How

to translate the optimal policy for the relaxed problem to a good MDP policy that satisfies all the

hard constraints continues to be an interesting research direction. Lastly, from the perspective of

applications, the implementation of our primal-dual algorithm for large-scale problems relies on

efficient policy evaluation through value function approximation. This is relatively easy when the

state space is large but the policy space is small. When the policy space is very large, we may need

to develop further approximation to reduce the policy space (e.g., focus on base-stock policy as in

inventory management (Agrawal and Jia 2019) or focus on certain index-based scheduling policies

in queue scheduling (Zhong et al. 2022)).
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Appendix

A. Proofs of the Main Results

A.1. Proof of Theorem 1

A.1.1. Proof under the discounted cost criterion We first introduce a lemma, which provides upper

and lower bounds for the movement of the Lagrangian after a single update.

Lemma 1. Let {(πm, λm)}m≥0 be the sequences of stationary policies and Lagrangian multipliers generated

by Algorithm 1. Then for arbitrary λ∈RK
+ and π ∈ΠS, we have the upper bound

L(πm, λ)−L(πm, λm)≤ 1

2ηm

(
∥λ−λm∥2−∥λ−λm+1∥2

)
+ ηm ·

∥∥∂λL(πm, λm)
∥∥2,

and the lower bound

L(π,λm)−L(πm, λm)≥ 1

(1− γ)ηm

(
Φπ(π∥πm+1)−Φπ(π∥πm)

)
− ηm

8(1− γ)
(
sup
s∈S

sup
a∈A
|Qλm,πm(s, a)|

)2
,

where Φπ is defined in (26).

Before we prove Lemma 1, we present two auxiliary lemmas. The first lemma (Lemma 2) is quite standard.

A similar version of it can be found in Proposition 3.2.2 in Bertsekas (2015). We provide the proof here for

self-completeness.

Lemma 2. Let f be a proper convex function on a space Ω (not necessarily a Euclidean space). Let C be

an open set in Ω, and Ψξ(·∥·) be the Bregman divergence induced by a strictly convex function ξ on Ω. For

an arbitrary constant η > 0 and a point x0 ∈Ω, define

x∗ = argmin
x∈C

{
f(x)+

1

η
Ψξ

(
x∥x0

)}
.

Then we have

f(x)− f(x∗)≥ 1

η

(
Ψξ

(
x∗∥x0

)
+Ψξ

(
x∥x∗)−Ψξ

(
x∥x0

))
, ∀ x∈Ω.

By symmetry, for a concave function g on Ω and

x̂∗ = argmax
x∈C

{
g(x)− 1

η
Ψξ

(
x∥x0

)}
.

Then

g(x)− g(x̂∗)≤−1

η

(
Ψξ

(
x̂∗∥x0

)
+Ψξ

(
x∥x̂∗)−Ψξ

(
x∥x0

))
, ∀ x∈Ω.

Proof of Lemma 2 We first consider the minimization problem. Since x∗ minimizes the objective f(x)+

η−1 ·Ψξ(x∥x0) on set C, there exists a subgradient q∗ ∈ ∂xf(x∗), such that for

p∗ = q∗ +
1

η
∂xΨξ(x

∗∥x0) = q∗ +
1

η

(
∇ξ(x∗)−∇ξ(x0)

)
,

we have

⟨p∗, x−x∗⟩ ≥ 0, ∀x∈ C.
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Then, for any x∈ C,

f(x)≥ f(x∗)+ ⟨q∗, x−x∗⟩

≥ f(x∗)+ η−1 · ⟨∇ξ(x0)−∇ξ(x∗), x−x∗⟩

= f(x∗)+ η−1 ·
(
Ψξ

(
x∗∥x0

)
+Ψξ

(
x∥x∗)−Ψξ

(
x∥x0

))
,

where the last equality follows from the definition of Bregman divergence, i.e.,

Ψξ(x∥y) = ξ(x)− ξ(y)−
〈
∇ξ(y), x− y

〉
.

For the maximization problem, we only need to consider −g and apply the above result. □

The next lemma is Lemma 6.1 in (Kakade and Langford 2002). Given two policies, it characterizes the

difference of expected cumulative costs as the inner product of the advantage function of one policy and the

occupation measure of another policy. Note that the value function V π and the action-value function Qπ of

an MDP under policy π are defined in (1) and (16).

Lemma 3. For arbitrary policies π,π′ ∈ΠS,

Es∼µ0

[
V π′

(s)
]
−Es∼µ0

[
V π(s)

]
=

1

1− γ
E(s,a)∼νπ′

[
Qπ(s, a)−V π(s)

]
,

where νπ′
(·, ·) is the occupation measure associated with π′.

Proof of Lemma 1 For the upper bound, note that because L(πm, λ) is linear in λ,

λm+1 =ProjΛM

{
λm + ηm · ∂λL(πm, λm)

}
is equivalent to

λm+1 = argmax
λ∈ΛM

{
L(πm, λ)−

1

2ηm
∥λ−λm∥2

}
.

Then, by Lemma 2, we have

L(πm, λ)−L(πm, λm+1)≤ (2ηm)−1
(
∥λ−λm∥2−∥λ−λm+1∥2−∥λm+1−λm∥2

)
≤ (2ηm)−1

(
∥λ−λm∥2−∥λ−λm+1∥2

)
.

Next,

L(πm, λ)−L(πm, λm)≤(2ηm)−1
(
∥λ−λm∥2−∥λ−λm+1∥2

)
+L(πm, λm+1)−L(πm, λm)

=(2ηm)−1
(
∥λ−λm∥2−∥λ−λm+1∥2

)
+
〈
∂λL(πm, λm), λm+1−λm

〉
≤(2ηm)−1

(
∥λ−λm∥2−∥λ−λm+1∥2

)
+ ηm ·

∥∥∂λL(πm, λm)
∥∥2,

where the last inequality follows from the definition of λm+1 and the non-expansive property of the projection.

We thus obtain the upper bound.

For the lower bound, recall that we update πm via

πm+1(·|s) = argmin
π(·|s)∈∆A

{〈
Qπm,λm(s, ·), π(·|s)

〉
+

1

ηm
KL
(
π(·|s)∥πm(·|s)

)}
,
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for each state s∈ S. Then, for an arbitrary stationary policy π′ ∈ΠS, we have

πm+1 = argmin
π∈ΠS

{
Es∼νπ′

s

[〈
Qπm,λm(s, ·), π(·|s)

〉
+

1

ηm
KL
(
π(·|s)∥πm(·|s)

)]}
where νπ′

s is the state occupation measure associated with π′.

Note that the space of the stationary policy, ΠS, can be represented as the product space of simplex ∆A.

Consider Ω :=ΠS =
(
∆A
)⊗|S|

and let

f(π) :=Es∼νπ′
s

[〈
Qπm,λm(s, ·), π(·|s)

〉]
,

Ψξ(π) :=Es∼νπ′
s

[
KL
(
π(·|s)∥πm(·|s)

)]
=Φπ′

(π∥πm).

where Φπ′
is defined in (26). Since f(π) is linear in π, setting π= π′, by Lemma 2, we obtain

Es∼νπ′
s

[〈
Qπm,λm(s, ·), π′(·|s)−πm+1(·|s)

〉]
≥ η−1

m

(
Φπ′

(πm+1∥πm)+Φπ′
(π′∥πm+1)−Φπ′

(π′∥πm)
)
,

which can be equivalently written as

η−1
m ·

(
Φπ′

(π′∥πm+1)−Φπ′
(π′∥πm)+Φπ′

(πm+1∥πm)
)

≤Es∼νπ′
s

[〈
Qπm,λm(s, ·), π′(·|s)−πm(·|s)

〉]
+Es∼νπ′

s

[〈
Qπm,λm(s, ·), πm(·|s)−πm+1(·|s)

〉]
. (32)

We next derive an upper bound for the right-hand side of inequalities (32). Let ∥ · ∥TV denote the total

variation norm of probability distributions. First, for each state s∈ S,

ηm ·
〈
Qπm,λm(s, ·), πm(·|s)−πm+1(·|s)

〉
≤ηm · sup

a∈A

∣∣Qπm,λm(s, a)
∣∣ ·∥∥πm(·|s)−πm+1(·|s)

∥∥
TV

≤η
2
m

8
·
(
sup
s∈S

sup
a∈A

∣∣Qπm,λm(s, a)
∣∣)2 +2 ·

∥∥πm+1(·|s)−πm(·|s)
∥∥2
TV

≤η
2
m

8
·
(
sup
s∈S

sup
a∈A

∣∣Qπm,λm(s, a)
∣∣)2 +KL

(
πm+1(·|s)∥πm(·|s)

)
by Pinsker’s inequality.

Hence, by taking the average, we obtain

Es∼νπ′
s

[〈
Qπm,λm(s, ·), πm(·|s)−πm+1(·|s)

〉]
≤ ηm

8
·
(
sup
s∈S

sup
a∈A

∣∣Qπm,λm(s, a)
∣∣)2 + η−1

m ·Φπ′
(πm+1∥πm). (33)

Second, recall that νπ(s, a) = νπ
s (s) ·π(a|s) and V π(s) = ⟨Qπ(s, ·), π(·|s)⟩. Then, by Lemma 3, for the modified

unconstrained MDP, we have

Es∼νπ′
s

[〈
Qπm,λm(s, ·), π′(·|s)−πm(·|s)

〉]
=E(s,a)∼νπ′

[
Qπm,λm(s, a)−V πm,λm(s)

]
=(1− γ) ·

(
L(π′, λm)−L(πm, λm)

)
. (34)

Finally, combining (32)-(34), we obtain

L(π′, λm)−L(πm, λm)≥ 1

(1− γ)ηm

(
Φπ′

(π′∥πm+1)−Φπ′
(π′∥πm)

)
− ηm

8(1− γ)
(
sup
s∈S

sup
a∈A
|Qπm,λm(s, a)|

)2
.

□

We are now ready to prove Theorem 1.
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Proof of Theorem 1 We prove the bound for D(π̄T )− q first. For this, we only need to establish an

upper bound for
∥∥[∂λL(π̄T , λ)]

+
∥∥.

Since L(πm, λ) is linear in λ, we have

L(πm, λm)−L(πm, λ
∗) = (λm−λ∗)⊤∂λL(πm, λm). (35)

by the saddle point property of (π∗, λ∗), we also have

L(πm, λ
∗)≥L(π∗, λ∗). (36)

In the following, we denote by L∗ :=L(π∗, λ∗).

Meanwhile, by the first part of Lemma 1, for any λ, we have

ηm · (λ−λm)⊤∂λL(πm, λm) = ηm · (L(πm, λ)−L(πm, λm))

≤
(
∥λm−λ∥2−∥λm+1−λ∥2

)
/2+ η2mG

2. (37)

Combining inequalities (35)-(37), we obtain

ηm · (λ−λ∗)⊤∂λL(πm, λm)

=ηm · (λ−λm)⊤∂λL(πm, λm)+ ηm · (λm−λ∗)⊤∂λL(πm, λm)

≤1

2

(
∥λm−λ∥2−∥λm+1−λ∥2

)
+ η2mG

2 + ηm ·
(
L(πm, λm)−L∗).

By taking the telescoping sum of the above inequality, we have for any λ∈ΛM ,

T−1∑
m=0

ηm · (λ−λ∗)⊤∂λL(πm, λm)

≤1

2

(
∥λ0−λ∥2−∥λT −λ∥2

)
+
( T−1∑

m=0

η2m

)
·G2 +

T−1∑
m=0

ηm ·
(
L(πm, λm)−L∗). (38)

For the left hand side of (38), let

ζT :=

T−1∑
m=0

ηm · ∂λL(πm, λm) =
( T−1∑

m=0

ηm

)
· ∂λL(π̄T , λ),

where the last equality follows from the definition of π̄T and the linearity of value function under the mixing

operation. If [ζT ]
+ = 0, then the upper bound holds trivially. Otherwise, let

λ̃= λ∗ + r · [ζT ]
+∥∥[ζT ]+∥∥ ,

where r is the slackness constant in the definition of ΛM in (24). Then it is easy to see that λ̃∈ΛM . By (38),

we have

(λ̃−λ∗)⊤ζT ≤
1

2
max
λ∈ΛM

∥λ−λ0∥2 +
( T−1∑

m=0

η2m

)
·G2 +

T−1∑
m=0

ηm ·
(
L(πm, λm)−L∗).

By the definition of λ̃, we also have

(λ̃−λ∗)⊤ζT = r · ([ζT ]
+)⊤ζT∥∥[ζT ]+∥∥ = r ·

∥∥[ζT ]+∥∥= r ·
( T−1∑

m=0

ηm

)
·
∥∥[∂λL(π̄T , λ)]

+
∥∥.
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Hence, ∥∥[∂λL(π̄T , λ)]
+
∥∥≤ maxλ∈ΛM

∥λ−λ0∥2

2r ·
∑T−1

m=0 ηm
+G2

∑T−1
m=0 η

2
m

r ·
∑T−1

m=0 ηm
+

∑T−1
m=0 ηm ·

(
L(πm, λm)−L∗

)
r ·
∑T−1

m=0 ηm
. (39)

Next, recall that π̄T =
∑T−1

m=0 η̃mπm, where η̃m = ηm/(
∑T−1

m=0 ηm), m= 0, . . . , T − 1. Since λ∗ is the optimal

solution of the dual problem and L(π∗, λ∗)≥L(π∗, λ̄T ), by the saddle point property, we have

T−1∑
m=0

η̃m ·
(
L(πm, λm)−L∗)= T−1∑

m=0

η̃m ·L(πm, λm)−L∗

≤
T−1∑
m=0

η̃m ·L(πm, λm)−L(π∗, λ̄T )

=

T−1∑
m=0

η̃m ·
(
L(πm, λm)−L(π∗, λm)

)
. (40)

Similarly, under Assumption 3, by the second part in Lemma 1, we have for π= π∗,

η̃m ·
(
L(πm, λm)−L(π∗, λm)

)
≤
(
(1− γ) ·

T−1∑
m=0

ηm

)−1
(
Φπ∗

(π∗∥πm)−Φπ∗
(π∗∥πm+1)+

η2mG
2

8

)
By taking the telescoping sum of the above inequality, we have

T−1∑
m=0

η̃m ·
(
L(πm, λm)−L(π∗, λm)

)
≤
(
(1− γ) ·

T−1∑
m=0

ηm

)−1

·
(G2

8
·
T−1∑
m=0

η2m +Φπ∗
(π∗∥π0)

)
, (41)

as the weighted KL divergence Φπ∗
(·||·) is nonnegative.

Lastly, combining inequalities (39)-(41), we have∥∥[∂λL(π̄T , λ)]
+
∥∥≤ (M + r)2

r ·
∑T−1

m=0 ηm
+
(
1+

1

8(1− γ)

)
G2

∑T−1
m=0 η

2
m

r ·
∑T−1

m=0 ηm
+

(1− γ)−1Φπ∗
(π∗∥π0)

r ·
∑T−1

m=0 ηm
.

If we set ηm =Θ(1/
√
m), there exists finite constants κ1 and κ2 such that

T−1∑
m=0

ηm ≥ κ1

√
T and

T−1∑
m=0

η2m ≤ κ2 log(T ).

Subsequently, we obtain∥∥[∂λL(π̄T , λ)]
+
∥∥≤ ((M + r)2 +

9

8
G2κ2 log(T )+Φπ∗

(π∗∥π0)
) 1

r(1− γ)κ1

√
T
.

Similarly, if we set ηm = η (constant step size), then∥∥[∂λL(π̄T , λ)]
+
∥∥≤ ((M + r)2 +

1

1− γ
Φπ∗

(π∗∥π0)
) 1

rTη
+
(
1+

1

8(1− γ)

)G2η

r
,

We next prove the bound for C(π̄T )−L∗. We start with the upper bound. By the definition of π̄T ,

we have

C(π̄T )−L∗ =

T−1∑
m=0

η̃m ·
(
L(πm, λm)−L∗)− T−1∑

m=0

η̃m ·λ⊤
m(D(πm)− q). (42)

From inequalities (40) and (41), we have

T−1∑
m=0

η̃m ·
(
L(πm, λm)−L∗)≤ ((1− γ) · T−1∑

m=0

ηm

)−1

·
(G2

8

T−1∑
m=0

η2m +Φπ∗
(π∗∥π0)

)
.
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Next, since D(πm)− q= ∂λL(πm, λm), setting λ= 0 in (37) and taking the telescoping sum, we obtain

−
T−1∑
m=0

η̃m ·λ⊤
m(D(πm)− q)≤

∥λ0∥2/2+G2 ·
∑T−1

m=0 η
2
m∑T−1

m=0 ηm
.

Hence,

C(π̄T )−L∗ ≤

((
1− γ+ 1

8

)
G2

T−1∑
m=0

η2m +Φπ∗
(π∗∥π0)+

(1− γ)∥λ0∥2

2

)
1

(1− γ)
∑T−1

m=0 ηm
.

For the lower bound, by the saddle point property, we have

C(π̄T ) =L(π̄T , λ
∗)− (λ∗)⊤(D(π̄T )− q)≥L∗− (λ∗)⊤(D(π̄T )− q).

Since λ∗ ≥ 0 and D(π̄T )− q≤ [D(π̄T )− q]+ = [∂λL(π̄T , λ)]
+,

C(π̄T )−L∗ ≥−∥λ∗∥
∥∥[∂λL(π̄T , λ)]

+
∥∥.

When ηm =Θ(1/
√
m), we have

C(π̄T )−L∗ ≤
(9G2

8
κ2 log(T )+Φπ∗

(π∗∥π0)+
∥λ0∥2

2

) 1

(1− γ)κ1

√
T
.

and

C(π̄T )−L∗ ≥−∥λ∗∥
(
(M + r)2 +

9

8
G2κ2 log(T )+Φπ∗

(π∗∥π0)
) 1

r(1− γ)κ1

√
T
.

Similarly, when ηm = η, we have

C(π̄T )−L∗ ≤
( 1

1− γ
Φπ∗

(π∗∥π0)+
∥λ0∥2

2

) 1

Tη
+

9G2η

8(1− γ)
,

C(π̄T )−L∗ ≥−∥λ∗∥
(
(M + r)2 +

1

1− γ
Φπ∗

(π∗∥π0)
) 1

rTη
−∥λ∗∥

(
1+

1

8(1− γ)

)G2η

r
.

A.1.2. Proof under the long-run average cost criterion The proof follows exactly the same lines

of argument as in the discounted case. The only difference is that we need to replace Lemma 3 with the

following lemma, which characterizes the difference of long-run average costs under different policies. Note

that in what follows, V π(s) and Qπ(s, a) denote the relative value function and relative Q-function as defined

in equations (22) and (23).

Lemma 4. Under long-run average cost criterion, for arbitrary policies π,π′ ∈ΠS,

C(π′)−C(π) =E(s,a)∼νπ′
[
Qπ(s, a)−V π(s)

]
.

where νπ′
(·, ·) is the stationary distribution of the Markov chain under policy π′.

Proof of Lemma 4 Note that

E(s,a)∼νπ′
[
Qπ(s, a)−V π(s)

]
=

∑
s∈S,a∈A

νπ′
(s, a) ·

(
c(s, a)−C(π)+

∑
s∈S

V π(s′)P (s′|s, a)−V π(s)
)

=C(π′)−C(π)+
∑

s∈S,a∈A

νπ′
(s, a) ·

(∑
s∈S

V π(s′)P (s′|s, a)−V π(s)
)
,

=C(π′)−C(π),

where the last step follows since ∑
s∈S,a∈A

νπ′
(s, a)P (s′|s, a) = νπ′

s (s′),

and
∑

a∈A ν
π′
(s, a) = νπ′

s (s). □
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A.2. Proof of Theorem 2

The proof follows similar lines of argument as the proof of Theorem 1, except that we now need to incorporate

the approximation errors.

We first modify Lemma 1 to incorporate the approximation errors.

Lemma 5. Let {(πβm
, λm)}m≥0 be the sequences of stationary policies and Lagrangian multipliers generated

by Algorithm 2. Then for arbitrary λ∈RK
+ and the optimal policy π∗, we have the upper bound

L(πβm , λ)−L(πβm , λm)≤ 1

2ηm

(
∥λ−λm∥2−∥λ−λm+1∥2

)
+ ηm ·

∥∥∂λL(πm, λm)
∥∥2,

and the lower bound

L(π∗, λm)−L(πβm , λm)≥ 1

(1− γ)ηm

(
Φπ∗

(π∗∥πβm+1
)−Φπ∗

(π∗∥πβm)
)

− ηm
8(1− γ)

(
sup
s∈S

sup
a∈A
|Qπβm ,λm(s, a)|

)2
+Es∼νπ∗

s

[
ϵm(s)+ η−1

m · δm(s)
]
.

where Φπ is defined in (26), ϵm(s) and δm(s) are the approximation error terms specified in later proof.

Proof of Lemma 5 The upper bounds follow directly from Lemma 1.

For the lower bound, we first introduce some new notations. Let

πm+1(·|s)∝ πβm(·|s) · exp
{
− ηm ·Qπβm ,λm(s, ·)

}
,

π̃m+1(·|s)∝ πβm
(·|s) · exp

{
− ηm ·Qλm

αm
(s, ·)

}
.

Note that πm+1(·|s) is the ideal updates of policy at the (m+1)-th iteration if we can evaluate Qπβm ,λm(s, a)

exactly. π̃m+1(·|s) is the ideal update when we replace the true Q-function with its approximation Qλm
αm

(s, a),

but do not project the policy onto the parameterized policy space. πm+1 and π̃m+1 are not required in the

actual algorithm. We only use them in the theoretical analysis.

By Lemma 2, we have that for each fixed state s,

η−1
m ·

(
KL
(
πm+1(·|s)∥πβm

(·|s)
)
+KL

(
π∗(·|s)∥πm+1(·|s)

)
−KL

(
π∗(·|s)∥πβm

(·|s)
))

≤
〈
Qπβm ,λm(s, ·), π∗(·|s)−πm+1(·|s)

〉
. (43)

The left-hand side (LHS) of inequality (43) can be decomposed as

LHS= η−1
m ·

(
KL
(
π∗(·|s)∥πβm+1

(·|s)
)
−KL

(
π∗(·|s)∥πβm(·|s)

))
+ η−1

m ·
(
KL
(
π∗(·|s)∥πm+1(·|s)

)
−KL

(
π∗(·|s)∥π̃m+1(·|s)

)︸ ︷︷ ︸
Q-function evaluation error

)
+ η−1

m ·
(
KL
(
π∗(·|s)∥π̃m+1(·|s)

)
−KL

(
π∗(·|s)∥πβm+1

(·|s)
)︸ ︷︷ ︸

policy projection error

)
+ η−1

m ·KL
(
πm+1(·|s)∥πβm

(·|s)
)
.

Note that the second part of the above equation represents the gap of KL-divergence due to inaccurate

evaluation of Q-function; while the third part is due to the projection to the parameterized policy space. For

the policy evaluation error, we have

KL
(
π∗(·|s)∥πm+1(·|s)

)
−KL

(
π∗(·|s)∥π̃m+1(·|s)

)
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=
〈
π∗(·|s), log

( π̃m+1(·|s)
πm+1(·|s)

)〉
=
〈
π∗(·|s)− π̃m+1(·|s), log

( π̃m+1(·|s)
πm+1(·|s)

)〉
+
〈
π̃m+1(·|s), log

( π̃m+1(·|s)
πm+1(·|s)

)〉
=
〈
π∗(·|s)− π̃m+1(·|s), log

( π̃m+1(·|s)
πm+1(·|s)

)〉
+KL(π̃m+1(·|s)∥πm+1(·|s)).

Note that by definition, we have

log
( π̃m+1(·|s)
πm+1(·|s)

)
= log(Zm+1/Z̃m+1)− ηm ·

(
Qπβm ,λm(s, ·)−Qλm

αm
(s, ·)

)
,

where Zm+1, Z̃m+1 are the normalization constants of policies πm+1 and π̃m+1. Since the KL-divergence is

non-negative, we have

KL
(
π∗(·|s)∥πm+1(·|s)

)
−KL

(
π∗(·|s)∥π̃m+1(·|s)

)
≥−ηm ·

〈
π∗(·|s)− π̃m+1(·|s),

(
Qπβm ,λm(s, ·)−Qλm

αm
(s, ·)

)〉
.

To simplify notation, we denote

ϵm(s) :=−⟨π∗(·|s)− π̃m+1(·|s), (Qπβm ,λm(s, ·)−Qλm
αm

(s, ·))⟩.

For the policy projection error, we have

KL
(
π∗(·|s)∥π̃m+1(·|s)

)
−KL

(
π∗(·|s)∥πβm+1

(·|s)
)

=
〈
π∗(·|s), log

(πβm+1
(·|s)

π̃m+1(·|s)

)〉
=
〈
π∗(·|s)−πβm+1

(·|s), log
(πβm+1

(·|s)
π̃m+1(·|s)

)〉
+KL(πβm+1

∥π̃m+1)

≥
〈
π∗(·|s)−πβm+1

(·|s), fβm+1
(s, ·)− (fβm

(s, ·)− ηm ·Qλm
αm

(s, ·))
〉

Here, the last inequality holds since πβm+1
(·|s)∝ exp{fβm+1

(s, ·)} and

π̃m+1(·|s)∝ exp{fβm(s, ·)} · exp{−ηm ·Qλm
αm

(s, ·))}.

To simplify notation, we denote

δm(s) :=
〈
π∗(·|s)−πβm+1

(·|s), fβm+1
(s, ·)− (fβm

(s, ·)− ηm ·Qλm
αm

(s, ·))
〉
.

Then, by inequality (43), we have〈
Qπβm ,λm(s, ·), π∗(·|s)−πm+1(·|s)

〉
≥η−1

m ·
(
KL
(
π∗(·|s)∥πβm+1

(·|s)
)
−KL

(
π∗(·|s)∥πβm(·|s)

))
+ η−1

m ·KL
(
πm+1(·|s)∥πβm

(·|s)
)
+ ϵm(s)+ η−1

m · δm(s). (44)

Next, following the proof of Lemma 1, we can show that〈
Qπβm ,λm(s, ·), πβm(·|s)−πm+1(·|s)

〉
≤ηm

8
·
(
sup
s∈S

sup
a∈A
|Qπβm ,λm(s, a)|

)2
+ η−1

m ·KL
(
πm+1(·|s)∥πβm

(·|s)
)
, (45)

and

Es∼νπ∗
s

[〈
Qπβm ,λm(s, ·), π∗(·|s)−πβm

(·|s)
〉]

= (1− γ) ·
(
L(π∗, λm)−L(πβm

, λm)
)
. (46)
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Combining (44) - (46), we have

L(π∗, λm)−L(πβm
, λm)≥ 1

(1− γ)ηm

(
Φπ∗

(π∗∥πβm+1
)−Φπ∗

(π∗∥πβm
)
)

− ηm
8(1− γ)

(
sup
s∈S

sup
a∈A
|Qπβm ,λm(s, a)|

)2
+Es∼νπ∗

s

[
ϵm(s)+ η−1

m · δm(s)
]
.

□

Proof of Theorem 2 With the bounds in Lemma 5, the proof of Theorem 2 follows exactly the same lines

of argument as the proof of Theorem 1. Specifically, for the constraints violation, similar to (39), we have

∥∥[∂λL(π̄T , λ)]
+
∥∥≤maxλ∈ΛM

∥λ−λ0∥2

2r ·
∑T−1

m=0 ηm
+G2

∑T−1
m=0 η

2
m

r ·
∑T−1

m=0 ηm
+

1

r
·
T−1∑
m=0

η̃m ·
(
L(πβm

, λm)−L∗).
By the saddle point property and Lemma 5, we also have

T−1∑
m=0

η̃m ·
(
L(πβm , λm)−L∗)≤ T−1∑

m=0

η̃m ·
(
L(πβm , λm)−L(π∗, λm)

)
≤
(
(1− γ) ·

T−1∑
m=0

ηm

)−1

·
(G2

8
·
T−1∑
m=0

η2m +Φπ∗
(π∗∥π0)

)
+

T−1∑
m=0

η̃m ·Es∼νπ∗
s

[∣∣ϵm(s)+ η−1
m · δm(s)

∣∣].
Hence, when we choose constant stepsize ηm = η, we have∥∥[∂λL(π̄T , λ)]

+
∥∥≤((M + r)2 +

1

1− γ
Φπ∗

(π∗∥πβ0
)
) 1

rTη
+
(
1+

1

8(1− γ)

)G2η

r

+
1

T

T−1∑
m=0

Es∼νπ∗
s

[
ϵm(s)+ η−1 · δm(s)

]
=O
( 1

Tη
+ η
)
+

1

T

T−1∑
m=0

Es∼νπ∗
s
Es∼νπ∗

s

[∣∣ϵm(s)+ η−1 · δm(s)
∣∣].

Similarly, for the optimality gap of the primary cost C(π̄T )−L∗, we have

∣∣C(π̄T )−L∗
∣∣≤O( 1

Tη
+ η
)
+

1

T

T−1∑
m=0

Es∼νπ∗
s

[∣∣ϵm(s)+ η−1 · δm(s)
∣∣].

We next analyze the error term Es∼νπ∗
s
[|ϵm(s)| and Es∼νπ∗

s
[|δm(s)|]. For the policy evaluation error, by

definition, we have

Es∼νπ∗
s
[|ϵm(s)|] =Es∼νπ∗

s
[⟨π∗(·|s)− π̃m+1(·|s), (Qπβm ,λm(s, ·)−Qλm

αm
(s, ·))⟩]

≤E(s,a)∼ν
πβm

[ dνπ∗
(s, a)

dνπβm (s, a)
·
∣∣∣Qπβm ,λm(s, a)−Qλm

αm
(s, a)

∣∣∣]
+E(s,a)∼ν

πβm

[ dνπ∗

s (s)

dν
πβm
s (s)

· π̃m+1(a|s)
πβm

(a|s)
·
∣∣∣Qπβm ,λm(s, a)−Qλm

αm
(s, a)

∣∣∣].
By Assumptions 5 and 7, the first term in the last inequality can be upper bounded by Cℓϵ. For the second

term, note that

π̃m+1(a|s)
πβm

(a|s)
= Z̃−1

m+1(s) · exp{−ηm ·Qλm
αm

(s, a)} ≤ Z̃−1
m+1(s) · exp{ηm ·G},



49

where the normalization constant

Z̃m+1(s) =
∑
a∈A

πβm
(a|s) · exp

{
− ηm ·Qλm

αm
(s, a)

}
≥ exp{−ηm ·G}.

Thus, the second term is upper bounded by Cℓ exp(2ηmG)ϵ. Then, we have

Es∼νπ∗
s
[|ϵm(s)|]≤Cℓ

(
1+ exp{2η ·G}

)
· ϵ=O(ϵ).

Similarly, for the policy projection error, by Assumptions 6 and 7, we have

Es∼νπ∗
s
[|δm(s)|] =Es∼νπ∗

s

[∣∣〈π∗(·|s)−πβm+1
(·|s), fβm+1

(s, ·)− (fβm
(s, ·)− ηm ·Qλm

αm
(s, ·))

〉∣∣]
=E(s,a)∼ν

πβm

[ dνπ∗
(s, a)

dνπβm (s, a)
·
∣∣∣fβm+1

(s, a)− (fβm
(s, a)− ηm ·Qλm

αm
(s, a))

∣∣∣]
+E(s,a)∼ν

πβm

[ dνπ∗

s (s)

dν
πβm
s (s)

·
∣∣∣fβm+1

(s, a)− (fβm
(s, a)− ηm ·Qλm

αm
(s, a))

∣∣∣]
≤2Cℓδ.

Above all, we have∥∥[∂λL(π̄T , λ)]
+
∥∥, ∣∣C(π̄T )−L∗

∣∣≤O( 1

Tη
+ η
)
+

1

T

T−1∑
m=0

Cℓ

(
(1+ exp{2η ·G}) · ϵ+ 2δ

η

)
≤O

( 1

Tη
+ η+ ϵ+

δ

η

)
.

□

B. Value Function Approximation for Queue Scheduling

In this section, we provide the details of value function approximation used in solving the queue scheduling

problems in Section 6.2. The approximation scheme we employ is based on the development in Dai and Shi

(2019). There are two key ingredients in the approximation.

1. Relative value function approximation: In the regularized policy iteration step, given a policy π,

we first need to estimate the associated relative value function V̄ π,λ(s) for all s∈ S, where the state

s= (x1, . . . , xI , z1, . . . , zJ),

xi denotes the length of queue i and zj denotes the number of customers in pool j. Due to the large state

space, we approximate the relative value function with a linear parameterization:

V̄ π,λ(s)≈ ⟨ϕ(s), θπ,λ⟩.

where ϕ(·)∈RK denotes the basis functions. Given a proper class of basis functions, we use the least-square

temporal difference (LSTD) algorithm to find the optimal coefficients, θπ,λ. In particular, we solve for

the optimal θπ,λ that minimizes a weighted L2 distance between V̄ π,λ(s) and ⟨ϕ(s), θπ,λ⟩ (Puterman 2014,

Bertsekas 2011). The details can be found in Algorithm 3.

As for the basis functions, following Veatch (2005), Moallemi et al. (2008), Dai and Shi (2019), we adopt

the quadratic bases:

{xi, x
2
i }1≤i≤I ,{zj , z2j }1≤j≤J ,{xjzk}1≤i≤I,1≤j≤J ,{xjxk}1≤j,k≤I and {zjzk}1≤j,k≤J ,
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Algorithm 3 LSTD Algorithm

Input: Simulator of the multi-class and multi-pool queueing network, policy π, instantaneous

cost function cλ(·, ·), basis functions ϕ(·)∈RK , initial state s0, and simulation horizon H.

for t= 0, . . . ,H do

Generate the action at under policy π.

Generate the next state st+1 conditional on (st, at).

end for

Estimate long-run average cost: Ĉπ,λ = 1
H

∑H−1

t=0 cλ(st, at).

Calculate: ÂH = 1
H

∑H−1

t=0 ϕ(st)
(
ϕ(st)−ϕ(st+1)

)⊤
, b̂H = 1

H
·
∑H−1

t=0 ϕ(st)
(
cλ(st, at)− Ĉπ,λ

)
.

Output: θ̂= Â−1
H b̂H .

which is motivated by the fluid approximation of the MDP (Dai and Shi 2019).

2. Relative action-value function evaluation: To execute the regularized policy iteration, we need to

calculate the relative action-value function Q̄π,λ(s, a) defined in (22). After we obtain θπ,λ, we can approxi-

mate Q̄π,λ(s, a) via

Q̄π,λ(s, a)≈ Q̂π,λ(s, a) := cλ(s, a)− C̄π,λ +
∑
s′∈S

⟨ϕ(s′), θπ,λ⟩ ·P (s′|s, a).

Since a constant shift in the relative action-value function does not change the regularized policy iteration,

we drop the constant term C̄π,λ. We next develop a closed-from expression for
∑

s′∈S ϕ(s
′) ·P (s′|s, a) under

the quadratic basis. Recall that the transition dynamics of the queueing system takes the form:

x′
i = xi− (z1 + · · ·+ zJ)+ δxi i=,1, . . . , I

z′j = zj +uj − δdj , j =,1, . . . , J.

where the new arrivals δxi ∼Poisson(Λi) and the new departures δdj ∼Binomial(zj +uj , µj). Then,

E[x′
i|s, a] = xi− (a1 + · · ·+ aJ)+Λi, E[z′j |s, a] = (zj + aj) · (1−µj)

E[x′
iz

′
j |s, a] = (xi− (a1 + · · ·+ aJ)+Λi) · (zj + aj) · (1−µj),

E[x′
i
2|s, a] = (xi− (a1 + · · ·+ aJ)+Λi)

2 +2Λi · (xi− (a1 + · · ·+ aJ)+Λi +Λ2
i

E[z′j
2|s, a] = (zj + aj) · (1−µj) ·µj +(zj + aj)

2 · (1−µj)
2, E[z′jz′k

2|s, a] = (zj + aj)(zk + ak)(1−µj)(1−µk).

C. Value Function Approximation for Inventory Management

In this section, we provide the details of approximations we use to solve the inventory management problems

in Section 6.2. We use a multi-layer perceptron with ReLU activation function to approximate the Q-function

Q(s, a). This is a classic network architecture in deep learning (LeCun et al. 2015). It contains 4 hidden

layers and 1 output layer. It takes the state vector s as input and outputs a 10-dimensional vector, whose

i-th component corresponds to the value of Q(s, i), i= 0,1, · · · ,9. Each hidden layer contains 32 nodes (see

Figure 5 for a pictorial illustration). In addition to the Q-function approximation, we use a separate neural
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Figure 5 Structure of neural network used in inventory experiment

network with the same architecture to represent the policy. There, we apply an additional softmax transform

at the output layer so that it generates a probability distribution.

To ensure training stability, we use “state normalization”. In particular, we first simulate the system

using a randomized policy that takes feasible actions uniformly at random. We then estimate the mean and

standard deviation of the state component-wise using the simulated trajectory. Before we feed the state

vector s into the neural network, we first normalize it via (s(k)− µ̂(k))/σ̂(k), where s(k) denotes the k-th

component of s, and µ̂(k) and σ̂(k) are the corresponding estimated mean and standard deviation (calculated

based on the simulated sample path). We use the same method to normalize the costs as well.

For policy evaluation, we apply the temporal difference (TD) learning algorithm to find the optimal

parameters of the corresponding neural network (Chapter 11 of Bertsekas (2011)), i.e., αm (in the m-th

primal-dual iteration). Algorithm 4 provides the details of an SGD-based TD algorithm, where our objective

is to minimize the mean squared Bellman error. We run the SGD-based TD learning algorithm for T = 104

steps with stepsize h= 0.0003 initialized from αm−1. We also use momentum to accelerate the convergence

(Kingma and Ba 2014). To update the policy, we aim to find βm (in the m-th primal-dual iteration) that

minimizes the KL divergence between the parameterized policy and the updated policy:

J(β) =E
s∼ν

πβm−1
s

[
KL
(
πβ(·|s)

∥∥Z−1
m · exp(−ηm ·Qλm

αm
(s, ·))

)]
,

where Qλm
αm

denotes the approximated Q-function in the m-th iteration. In implementation we run stochastic

gradient descent for T = 104 steps with stepsize h= 0.0003, initialized from βm−1. See Algorithm 5 for more

details.
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Algorithm 4 SGD-based TD learning

Input: target policy πβm−1
, stepsize h, initial state s0, initial parameter α0, and computational

budget T .

for t= 0, . . . , T do

Sample at ∼ πβm−1
and st+1 ∼ P (·|st, at).

Update parameter

αt+1 = αt−h·
(
Qλm

αt (st, at)−
(
(1−γ)cλm(s, a)+γEa∼πβm−1

(·|st+1)[Q
λm
αt (st+1, a)]

))
·∇αQ

λm
αt (st, at).

end for

Output: αm = αT .

Algorithm 5 SGD-based policy update

Input: target Q-function Qλm
αm

(s, ·), stepsize h, initial weight β0, temperature parameter ηm−1,

and computational budget T .

for t= 0, . . . , T do

Sample at ∼ πβm−1
and st+1 ∼ P (·|st, at).

Update parameter

βt+1 = βt +h ·
(
2 log(πβt(st, at))+ ηm−1 ·Qλm

αm
(st, at)

)
· ∇βπβt(st, at).

end for

Output: βm = βT .


