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Many organizations have access to abundant data but lack the computational power to process the data. While

they can outsource the computational task to other facilities, there are various constraints on the amount of

data that can be shared. It is natural to ask what can data outsourcing accomplish under such constraints.

We address this question from a machine learning perspective. When training a model with optimization

algorithms, the quality of the results often relies heavily on the points where the algorithms are initialized. We

propose simulation-based algorithms that can utilize a small amount of outsourced data to find good initial

points. Under suitable regularity conditions, we provide theoretical guarantees that the algorithms can find

good initial points with a high probability. We also conduct numerical experiments to demonstrate that our

algorithms perform significantly better than the random start approach.
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1 INTRODUCTION
In this era, data is the new gold. Organizations of different sizes and sectors all realize the value

of collecting data. However, it often requires substantial computational power to turn these data

into valuable prediction models and not all organizations have such computational resources. One

possible solution to this problem is outsourcing the data processing task to an external computing

facility, where the computational power is substantially cheaper. However, the data organization

may only be willing to share a small portion of data due to the following reasons: First, if the

external computing facility has access to all the available data, it can obtain an accurate prediction

model, which leads to potential competition risk. In addition, transferring data can be expensive

especially when certain encryption is required.

Given the constraint that only part of the data is “shareable", the data organization can only expect

sub-optimal solutions from the computing facility, and additional learning is required to improve

these premature results. Since the data organization is assumed to have limited computational power,

it is desirable if the computational cost of the additional learning can be minimized. In this context,

we are interested in investigating the following two questions: 1) What type of computational task
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should be assigned to the external computing facility? 2) How much data should be outsourced? In

this paper, we address these two questions from the perspective of machine learning.

Most machine learning models are trained using the risk minimization approach. That is, the

unknown parameter \ is inferred by minimizing a loss function of the form 𝐹 (\ ) = E[𝑓 (\, 𝑋 )]
where 𝑋 is averaged over a population distribution or an empirical distribution of 𝑁 data points

(size of the full dataset), and 𝑓 (\, 𝑥) is the loss of using the model with parameter \ to explain

data point 𝑥 . Greedy local optimization algorithms are often applied to minimize 𝐹 . If 𝐹 is strongly

convex, the computational cost of an algorithm T , 𝑐 (T ), depends on the accuracy requirement 𝜖 ,

i.e., how close to the optimal object value one wants to achieve, the initialization \ 0, and/or the

number of data points 𝑁 . In this setting, 𝑐 (T ) can be large but is computationally manageable

since T converges to the optimal parameter regardless of the initialization [22, 39]. However, if 𝐹 is

non-convex, the quality of the parameter learned from T can depend heavily on its initialization \ 0.

In general, greedy algorithms converge to the local minimum that is close to \ 0. Thus, in order to

find the global minimum \ ∗, one needs to start T in an appropriate attraction region of the optimal

\ ∗, B∗
0
. In practice, the location and shape of B∗

0
are unknown. A common way to deal with this issue

is using randomized initializationwhere the initial points are sampled uniformly at random from the

solution space. The idea is that by trying multiple, say𝑀 , random initial points, at least one of them

will be in B∗
0
, and T applied to that point will find \ ∗. Hence, the total computational cost, in this

case, is𝑀𝑐 (T ), where 𝑐 (T ) is the computational cost to find a stationary point (e.g., local or global

minimum). Here, we assume the computational costs of T starting from different initial points are

the same, i.e., 𝑐 (T ) can be interpreted as the worst-case complexity among all possible initial points.

In practice, when using smarter initialization, one can be closer to local/global minimums when

applying T , and achieve reduced computational cost when applying T to find a stationary point.

However, in this paper, we mainly focus on using smarter initialization to increase the chance of

finding 𝐵∗
0
. In this case, fewer initialization points are required, and T only needs to be applied a

few times.

From the above discussion, we note that when learning a non-convex loss function, the com-

putational cost is the combined cost of two tasks: 1) Exploration: find an initial point within the

attraction region of the global minimum and 2) Exploitation: running greedy algorithm starting

from a given initial point. To achieve high accuracy, the exploitation task given a good starting

point often requires a sufficiently large amount of data and is very well understood in the literature

[5]. In contrast, the exploration task is less studied. The performance can be problem dependent

and the computational cost can be very high. One important insight that we will leverage in our

subsequent development is that the landscape of the empirical risk based on a random sample

of size 𝑛, 𝐹𝑛 (\ ) = 1

𝑛

∑𝑛
𝑖=1 𝑓 (\, 𝑥𝑖 ), should resemble that of 𝐹 (\ ) reasonably well when 𝑛 is large

enough. Thus, in the data outsourcing context, it is natural to ask if we can assign the exploration

task to the external computing facility. In other words, we split the computation tasks into two

phases:

Exploration: The external computing facility is assigned to explore the energy landscape of 𝐹𝑛 (\ ),
where 𝑛 is much smaller than the size of the full dataset, and find a good initial point(s) \ 0 (or

\1, . . . , \𝑚).

Exploitation: The data organization can runmore refined exploitation starting from \ 0 (or \1, . . . , \𝑚).

In this case, the computational cost, from the data organization’s perspective, can be reduced from

𝑀𝑐 (T ) to 𝑐 (T ) (or 𝑚𝑐 (T )). Such a reduction can be substantial if 𝑀 needs to be a very large

number to achieve the desired performance.

Similar computational strategies can also be applied outside the data outsourcing context. The

idea is that we can first use a less accurate loss function 𝐹𝑛 (\ ) with a smaller amount of data to
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find good initializations. We then employ greedy optimization algorithms on 𝐹 (\ ) starting from
these carefully selected initial points.

Our contribution. First, we propose simulation-based algorithms for the external computing

facility to obtain good initializations for 𝐹 (\ )-optimization with outsourced data. Particularly, we

design two types of procedures, sampling and optimization, depending on whether the optimization

cost 𝑐 (T ) is moderate or large: If 𝑐 (T ) is moderate, multiple instances of T can be implemented

starting from different initial points. In this scenario, we suggest sampling multiple initial points

from a distribution 𝜋𝛽 (\ ) ∝ exp(−𝛽𝐹𝑛 (\ )) with a properly chosen 𝛽 . The distribution 𝜋𝛽 (\ ) tends
to concentrate in regions where the loss is small, and the degree of concentration is determined by

𝛽 . If 𝑐 (T ) is large, only one instance of T can be implemented. In this scenario, we suggest starting

from the global minimum of 𝐹𝑛 (\ ), i.e., a single initial point. This minimizer can be obtained by

applying a selection procedure on samples from 𝜋𝛽 (\ ) as we will explain in detail in Section 2.2.

Second, our analytical results provide a rigorous justification of these procedures and guide how

much data should be outsourced and how to choose the sampling parameter 𝛽 . In particular, we

show that under proper regularity conditions, for 𝑛 = Ω(𝑑 log(1/𝜌)𝛿−2), with probability (1 − 𝜌),
both methods can find a good initial point, i.e., when T is initialized from this point, it will find

the global minimum of 𝐹 (\ ). Here, 𝑑 is the dimension of \ , and 𝛿 is a parameter for the required

approximation accuracy of the loss function, i.e., how well 𝐹𝑛 (\ ) approximates 𝐹 (\ ), and it may

depend on the structure/geometry of 𝐹 (\ ).
To sum up the data outsourcing idea, the data organization only needs to share 𝑛 data points with

the external computing facility. The external computing facility will carry out either the sampling

or the optimization procedure on 𝐹𝑛 (\ ) to generate a small set of good initial point(s). The data

organization can then run a greedy optimization algorithm starting from these point(s) to optimize

𝐹 . The data organization saves in-house computational effort by running much fewer copies of

greedy optimization algorithms.

Related literature. Data outsourcing has become an interesting problem due to the emergence

of big data and cloud computing. Most existing work focuses on data management policies and

encryption [8, 15, 38]. To the best of our knowledge, this work is the first to study data outsourcing

from the perspective of finding better initializations for machine learning.

Our problem can be viewed as a special non-convex stochastic optimization problem. How

to efficiently solve smooth but non-convex problems is a fast developing area [2, 18, 46]. Our

contribution is the development of a new initialization method. While finding good initial points

is an important problem, the related literature is rather limited. The most common approach is

using crude uniform sampling, which can be costly as many such initial points need to be tested to

find a global minimum. Our approach provides a computationally feasible refined solution to this

problem. Finding good initializations in more specific settings has been studied in the literature.

For example, [7] studies the efficacy of gradient descent with random initialization for solving

systems of quadratic equations. Weight initialization for neural networks has been investigated

in [3, 21, 52]. Spectral initialization has been proposed for generalized linear sensing models in

the high dimensional regime [28]. The key advantages of our proposed method are its general

applicability and theoretical performance guarantee.

Our proposed algorithm is closely related to stochastic adaptive search and the two-phase

methods in global optimization [51]. One popular stochastic adaptive search algorithm is simulated

annealing [1, 24, 32]. The key difference between our approach and simulated annealing is that we

completely separate the exploration task from the exploitation task. This allows us to use a smaller

sample size for the exploration task, and when using the Boltzmann machine type of procedure

for exploration, we do not need to set a cooling schedule. Our method can be viewed as a special
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case of the two-phase methods (see [48] for an overview). In the context of data outsourcing, we

advocate outsourcing the exploration phase to the external computing facility using a smaller set

of data. We analyze how the Boltzmann machine type of procedures can be applied by the external

computing facility to achieve good exploration, i.e., finding good initializations for the in-house

exploitation phase.

Our problem is related to but different from federated learning. Federated learning is a special

form of distributed learning where the central learning agent does not have access to distributed

agents’ devices and data [26]. Most existing developments in federated learning try to address two

main challenges: i) the communication cost between distributed agents and the central agent, and

ii) heterogeneous distributed agents where the data owned by the individual agent may not be a

representative sample of the full data (see, e.g., [23, 27, 53]). In contrast, our setting assumes the

data organization (central agent) owns all the data and can decide what to distribute to external

computing facilities (distributed agents). In this case, we can ensure that the data sent to distributed

agents are representative. The task we assign to distributed agents is also fundamentally different

from federated learning.

Our theoretical analysis relies on detailed finite-sample performance quantification when using

𝐹𝑛 (\ ) to approximate 𝐹 (\ ). Empirical process theory can be utilized to establish uniform conver-

gence of 𝐹𝑛 (\ ) to 𝐹 (\ ) and consistency of M-estimators [44]. In stochastic programming, bounds on

sample size have been developed to ensure that the set of 𝛿-optimal solutions of the sample average

approximation is contained in the set of 𝜖-optimal solutions of the true objective (Chapter 5.3.1

in [40]). Our development leverages a stronger notion of convergence recently developed in [30],

which ensures uniform convergence of not only the empirical loss 𝐹𝑛 (\ ), but also its gradient and

Hessian, i.e., ∇𝐹𝑛 (\ ) and ∇2𝐹𝑛 (\ ). These convergence results allow us to establish the accuracy and

complexity of the sampling and optimization procedures on 𝐹𝑛 (\ ) using some recent complexity

bounds developed in the literature [17, 45].

Notation. We use ∥\ ∥ =
√
\𝑇\ to denote the Euclidean norm of a vector \ , and ∥𝐴∥op =

sup{∥𝐴𝑣 ∥/∥𝑣 ∥ : 𝑣 ≠ 0} to denote the operator norm of a matrix 𝐴 in the Euclidean space. For real

numbers 𝑎, 𝑏, let 𝑎 ∧ 𝑏 = min{𝑎, 𝑏} and 𝑎 ∨ 𝑏 = max{𝑎, 𝑏}. Given two sequences of real numbers

{𝑎𝑛}𝑛≥1 and {𝑏𝑛}𝑛≥1, 𝑎𝑛 = 𝑂 (𝑏𝑛) denotes that there exists a constant𝐶 > 0, such that |𝑎𝑛 | ≤ 𝐶 |𝑏𝑛 |,
and 𝑎𝑛 = Ω(𝑏𝑛) denotes that |𝑎𝑛 | ≥ 𝐶 |𝑏𝑛 |. For two probability measures a and ã on the same sigma

algebra, we denote ∥a − ã ∥𝑇𝑉 as the total variation distance between a and ã .

2 METHODOLOGY
We consider minimizing a smooth but non-convex function 𝐹 (\ ), which takes the form

𝐹 (\ ) = E𝑋∼b
[
𝑓 (\, 𝑋 )

]
,

over a 𝑑-dimensional unit ball Θ = {\ ∈ R𝑑 : ∥\ ∥ ≤ 1}. We allow 𝐹 to be the empirical loss function,

in which case 𝐹 (\ ) = 1

𝑁

∑𝑁
𝑖=1 𝑓 (\, 𝑥𝑖 ) where {𝑥1, . . . , 𝑥𝑁 } is the full dataset, i.e., b is the empirical

distribution. The restriction that \ ∈ Θ can be relaxed to any bounded convex domains, which

is commonly assumed in the literature [30]. In machine learning applications, the range of \ can

often be moderated by scaling the elements of 𝑥 .

Since 𝐹 (\ ) is non-convex, the performance of any greedy deterministic optimization algorithm

relies heavily on the choice of initial points. Specifically, a deterministic optimization algorithm T
such as gradient descent (GD) or Newton’s method can be trapped in a suboptimal local minimum

instead of converging to the desired global minimum if initialized inappropriately. In this work, we

design data outsourcing and exploration mechanisms to find good initial points for the optimization
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algorithm T . The objective is to increase the chance that T initialized from these points finds the

global minimum.

Assume the outsourced data {𝑥1, . . . , 𝑥𝑛} follow the same distribution as b . We can construct a

sample average approximation of 𝐹 (\ ) as 𝐹𝑛 (\ ) = 1

𝑛

∑𝑛
𝑖=1 𝑓 (\, 𝑥𝑖 ), which is a loss function of 𝑛 data

points. Evaluating 𝐹𝑛 (\ ) or ∇𝐹𝑛 (\ ) has a much smaller cost (linear in 𝑛) than evaluating 𝐹 (\ ) or
∇𝐹 (\ ) if the sample size 𝑛 is not too large. This makes exploring the energy landscape of 𝐹𝑛 (\ )
using a sampling-based method (e.g., Langevin dynamics) more computationally friendly. Note

that 𝐹𝑛 (\ ) captures certain structural information of 𝐹 (\ ). We are interested in effectively utilizing

this information. More specifically, the work of [30] has shown that the energy landscape of 𝐹𝑛 (\ )
bears a close similarity to that of 𝐹 (\ ) when 𝑛 surpasses a certain threshold. This indicates that the

global minimum of 𝐹𝑛 (\ ) is likely to be closer to that of 𝐹 (\ ) than a random guess. Let
ˆ\ ∗ denote

the global minimum of 𝐹𝑛 (\ ) and \ ∗ denote the global minimum of 𝐹 (\ ). Intuitively, if we use ˆ\ ∗

as the initial point when applying the optimization algorithm T , we are more likely to converge to

\ ∗. We refer to this approach as the optimization approach. It is quite computationally friendly to

the data organization, since only one instance of in-house T is needed. However, it also comes

with certain costs: 1) 𝐹𝑛 (\ ) is a noisy realization of 𝐹 (\ ), especially when 𝑛 is small. Using just the

global minimizer of 𝐹𝑛 , which is a single point, can be risky. 2) 𝐹𝑛 is likely to be nonconvex as well

and optimizing it can be expensive for the external computing facility.

An alternative approach is to sample initial points from a distribution

𝜋𝛽 (\ ) ∝ exp(−𝛽𝐹𝑛 (\ )) · 1{\ ∈Θ} . (1)

The parameter 𝛽 > 0 is often referred to as the inverse temperature [50], which determines

how much 𝜋𝛽 (\ ) concentrates around the global minimum of 𝐹𝑛 (\ ). A larger 𝛽 leads to a higher

concentration around
ˆ\ ∗. When 𝛽 = ∞, we get

ˆ\ ∗ with probability one. On the other hand, when

𝛽 = 0, 𝜋𝛽 is simply the uniform distribution over Θ, which is equivalent to random initialization.

Sampling from 𝜋𝛽 with 𝛽 ∈ (0,∞) can be viewed as an interpolation of the two extreme cases (see

Figure 1 for a pictorial illustration). In general, the probability that a sample from 𝜋𝛽 (\ ) is far away
from

ˆ\ ∗ decays exponentially fast as 𝛽 increases. However, the cost of sampling from 𝜋𝛽 (\ ) may

increase as 𝛽 increases, due to the slow rate of convergence of the underlying Markov chain in

the sampling algorithm (See Section 3.3 for more details). Compared to the optimization approach,

this sampling approach takes into account that 𝐹𝑛 (\ ) is a noisy estimate of 𝐹 (\ ). Thus, instead of

outputting a single point, we draw several initial points from 𝜋𝛽 (\ ).
We next provide more details of these two approaches. In practice, the implementation of the

optimization approach requires sampling tools due to the non-convexity of 𝐹𝑛 . Thus, we start with

the sampling approach.

2.1 Procedures with the sampling approach
There is rich literature on how to sample from 𝜋𝛽 (\ ). When 𝜋𝛽 (\ ) is close to some simple refer-

ence distributions, independent samples can be obtained through rejection sampling, though this

method can be highly inefficient for high-dimensional \ . For more complicated target distributions,

Markov Chain Monte Carlo (MCMC) algorithms are typically applied. The idea is to simulate a

stochastic process for which 𝜋𝛽 (\ ) is its invariant distribution. We next provide a well-known

MCMC algorithm, called unadjusted Langevin algorithm (ULA) [11], to sample approximately from

𝜋𝛽 (\ ).
Other popular MCMC algorithms include randomwalk Metropolis, Metropolis adjusted Langevin

algorithm (MALA) [37], etc. Recent studies have shown that these MCMC algorithms are efficient
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Fig. 1. Density function 𝜋𝛽 (\ ) for different values of 𝛽

Algorithm 1 Unadjusted Langevin Algorithm (ULA)

Input: Outsourced data sample {𝑥1, . . . , 𝑥𝑛}, inverse temperature parameter 𝛽 , step size ℎ, sam-

pling budget 𝐾 .

Initialization: Initial point \ 0.
for 𝑘 = 1 to 𝐾 do
Given \𝑘−1, sample \𝑘 distributed as N(\ − ℎ∇𝐹𝑛 (\𝑘−1), 2𝛽ℎ𝐼 ) where N denotes a Normal

distribution and 𝐼 is the 𝑑 × 𝑑 identity matrix.

end for
Output: \𝐾 .

when the target distribution is log-concave with perturbations [13, 29]. When ∇𝐹𝑛 is too expensive

to evaluate, one may use online versions of these algorithms where the gradient is replaced by a

stochastic gradient [47]. When 𝐹𝑛 (\ ) is not differentiable, one may use random walk Metropolis.

When 𝐹𝑛 is non-convex with well-separated local minima, 𝜋𝛽 (\ ) is a multimodal distribution, and

it can be difficult to sample 𝜋𝛽 (\ ) using these algorithms due to the slow rate of convergence to

stationarity. This is particularly the case if 𝛽 is large, since the stochastic algorithm may stick to

one mode for many iterations before visiting the other modes. This issue can often be alleviated

using methods such as parallel tempering or simulated tempering [9, 17, 41, 49]. The papers [17, 25]

show that simulated tempering algorithms can sample a multimodal distribution with polynomial

complexity.

The exploration algorithm is summarized in Algorithm 2

Algorithm 2 Sampling-based Initial Point Selection (SIPS)

Input: Outsourced data sample {𝑥1, . . . , 𝑥𝑛}, inverse temperature parameter 𝛽 , sampling algo-

rithmM, exploration sample size𝑚.

Initialization: Construct the empirical average 𝐹𝑛 (\ ) = 1

𝑛

∑
𝑓 (\, 𝑥𝑖 ) and the target density

𝜋𝛽 (\ ) ∝ exp(−𝛽𝐹𝑛 (\ )) · 1{\ ∈Θ} .
Sampling: Apply M to draw samples {\1, . . . , \𝑚} from distribution 𝜋𝛽 .

Output: Candidate initial points {\1, . . . , \𝑚}.

, Vol. 1, No. 1, Article . Publication date: June 2023.



Can We Do Better Than Random Start? The Power of Data Outsourcing 7

Given the samples \1, . . . , \𝑚 obtained by the external computing facility, the data organization

can then implement T starting from each \𝑖 . Let T (\ ) denote the output of the optimization

algorithmT starting from \ . Our theoretical analysis in the next section gives a rigorous justification

of this procedure assuming 𝛽 is large enough (see Theorem 3.5). In practice, this approach is more

efficient than the naive random start even with a moderate 𝛽 . As we will demonstrate through

numerical experiments in Section 4, 𝛽 = 2 already generates good initial points with a high

probability in many examples.

2.2 Procedures with the optimization approach
When the in-house computational resource is limited, we can utilize the external computing facility

to do further optimization and only pass the global minimizer of 𝐹𝑛 (\ ) to the data organization.

In this case, the data organization only needs to implement one instance of T . When 𝐹𝑛 (\ ) is
non-convex, there is no consensus on how to find its global minimizer. Typical choices include

either using meta-heuristic algorithms or sampling-based algorithms. Here we consider using

sampling-based algorithms due to their connection to the sampling approach.

One popular way to find the global minimum of 𝐹𝑛 (\ ) involves generating samples \1, . . . , \𝑚
from the distribution 𝜋𝛽 (\ ) with a large 𝛽 . This approach is investigated by [6, 36, 50] when ULA or

its online version is used to sample from 𝜋𝛽 (\ ). As mentioned earlier, the parameter 𝛽 determines

how much 𝜋𝛽 (\ ) concentrates around the global minimum of 𝐹𝑛 (\ ), and a larger 𝛽 leads to a higher
concentration. When the samples \1, . . . , \𝑚 are available as candidate solutions, we can choose

the one with the lowest objective value, i.e., \𝑖∗ , where

𝑖∗ = argmin𝑖∈{1,...,𝑚}𝐹𝑛
(
\𝑖

)
. (2)

This procedure is summarized as the annealing approach in Algorithm 3. For this approach to be

effective at finding the global minimum of 𝐹𝑛 , 𝛽 needs to be large enough. This usually increases

the difficulty of sampling from 𝜋𝛽 (\ ) (see, e.g., Lemma 3.8).

A refinement of (2) can be applied to improve the quality of the initial point. In particular, if we

apply a deterministic optimization algorithm T̂ , e.g., gradient descent, to 𝐹𝑛 initialized at \𝑖 , we

may achieve a lower 𝐹𝑛-value. We then pick T̂ (\𝑖 ) with the lowest 𝐹𝑛-value as the initial point, i.e.,

T̂ (\𝑖∗ ), where
𝑖∗ = argmin𝑖∈{1,...,𝑚}𝐹𝑛

(
T̂ (\𝑖 )

)
. (3)

This procedure is summarized as the sampling-assisted-optimization (SAO) approach in Algorithm

3. The SAO approach is similar to GDxLD developed in [10]. Comparing SAO to the annealing

approach, sampling for SAO can often be done more efficiently with a smaller value of 𝛽 . However,

we incur the extra cost of invoking T̂ . We providemore detailed discussions about the computational

cost for the external computing facility in Section 3.3.

3 THEORETICAL GUARANTEE IN FINDING THE GLOBAL MINIMUM
In this section, we analyze the performance of Algorithms 2 and 3. The key to the successful

implementation of the algorithms is to set the appropriate outsourcing sample size 𝑛, inverse

temperature 𝛽 , and sample size of initial points𝑚. Our performance analysis provides guidance on

how to choose these parameters.

Conditions on the energy landscape. We start with some assumptions on the energy landscape of

𝐹 (\ ) and the randomness when evaluating 𝑓 (\, 𝑥). Since we run an optimization algorithm T that

converges to a stationary point in the second phase (in-house optimization phase), the following

assumption regularizes the configuration of the stationary points:
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Algorithm 3 Optimization-based Initial Point Selection (OIPS)

Input: Outsourced data sample {𝑥1, . . . , 𝑥𝑛}, inverse temperature parameter 𝛽 , exploration

sample size𝑚, sampling algorithm M, optimization algorithm
ˆT .

Initialization: Construct the empirical average 𝐹𝑛 (\ ) = 1

𝑛

∑
𝑓 (\, 𝑥𝑖 ) and the target density

𝜋𝛽 (\ ) ∝ exp{−𝛽𝐹𝑛 (\ )} · 1{\ ∈Θ}
Sampling: Apply M to draw a sample {\1, . . . , \𝑚} from distribution 𝜋𝛽 .

if Annealing then
Set \ 0 = \𝑖∗ where 𝑖

∗ = argmin𝑖∈{1,...,𝑚}𝐹𝑛
(
\𝑖

)
.

end if
if Sampling-assisted-optimize (SAO) then
Set \ 0 = T̂ (\𝑖∗ ) where 𝑖∗ = argmin𝑖∈{1,...,𝑚}𝐹𝑛

(
T̂ (\𝑖 )

)
.

end if
Output: Candidate initial point \ 0

Assumption 1. 𝐹 (\ ) : Θ → R is (𝜎, [)-strongly Morse, that is, ∥∇𝐹 (\ )∥ ≥ 𝜎 for ∥\ ∥ = 1,
and _min (∇2𝐹 (\ )) ≥ [ if ∥∇𝐹 (\ )∥ ≤ 𝜎 , where _min (𝐴) is the minimum eigenvalue of 𝐴. Moreover
𝐿∗ := sup\ ∈Θ ∥∇3𝐹 (\ )∥op < ∞.

One consequence of Assumption 1 is that all the stationary points of 𝐹 (\ ) in Θ are finite and

well-separated [30]. We denote these stationary points as (\ ∗
0
, \ ∗

1
, . . . \ ∗

𝐾
). Without loss of generality,

let \ ∗
0
be the global minimum of 𝐹 (\ ).

For simplicity of discussion, we assume that T is a deterministic optimization algorithm that is

guaranteed to converge to a stationary point, and where it convergence to is determined by the

initial point. Recall that T (\ 0) denotes the stationary point to which T converges starting from

\ 0. Then, T can be viewed as a deterministic mapping from the parameter space Θ to the set of

stationary points {\ ∗
0
, \ ∗

1
, . . . , \ ∗

𝐾
}. Our goal is to find a \ 0 such that T (\ 0) = \ ∗

0
.

Given the deterministic optimization algorithm T , the attraction region of the global minimum

\ ∗
0
can be defined as

B∗
0
= {\ ∈ Θ : T (\ ) = \ ∗

0
}.

In general, B∗
0
cannot be characterized without T . On the other hand, it is well-known that for

many optimization algorithms, T (\ 0) = \ ∗
0
if \ 0 is in a neighborhood of \ ∗

0
within which 𝐹 (\ ) is

strongly convex. This indicates that a proper neighborhood of \ ∗
0
can be used as a substitution of

B∗
0
. We formalize this idea as follows.

Assumption 2. There exists a ball centered at \ ∗
0
with radius 𝑟 , B𝑟 (\ ∗0) = {\ : ∥\ − \ ∗

0
∥ ≤ 𝑟 }, such

that B𝑟 (\ ∗0) ⊆ B∗0 and 𝐹 (\ ) is `-strongly convex in B𝑟 (\ ∗0).

Note that Assumption 2 may come as a consequence of Assumption 1. In particular, 𝐹 (\ ) is
[/2-strongly convex in B𝑟 (\ ∗0) when 𝑟 ≤ [/(2𝐿∗).

The assumptions above allow us to derive an upper bound for the failure rate of the benchmark

random start algorithm. Let F𝑏 denote the random event that among the𝑀 initial points drawn

uniformly at random from Θ, none of them leads to \ ∗
0

1
. Then, P(F𝑏) ≤ (1 − P(\ ∈ B𝑟 (\ ∗0)))𝑀 ,

where \ follows a Uniform distribution on Θ. Since P(\ ∈ B𝑟 (\ ∗0)) = Ω(𝑟𝑑 ), in order for P(F𝑏)
to be lower than a user-specified confidence level 𝜌 , we need 𝑀 = Ω( | log 𝜌 |𝑟−𝑑 ), which has an

exponential dependence on 𝑑 .

Our next assumption concerns the uniqueness of the global minimum.

1
In F𝑏 , 𝑏 stands for baseline and random start is the baseline algorithm.
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Assumption 3. There exists a constant 𝛼 > 0, such that for all \ ∉ B𝑟 (\ ∗0), 𝐹 (\ ) − 𝐹 (\ ∗0) ≥ 𝛼 .
We refer to 𝛼 as the optimality gap. In Section 3.4, we will discuss what can be achieved if

Assumption 3 does not hold.

The basic idea of our data outsourcing and exploration scheme is to approximate 𝐹 (\ ) via its
sample average 𝐹𝑛 (\ ) and then use the global minimum of 𝐹𝑛 (\ ) as the initial point to optimize

𝐹 (\ ). A key question is that in order for 𝐹𝑛 (\ ) to be a good approximation of 𝐹 (\ ), how many data

points need to be outsourced? A similar estimation problem has been studied in [30]. We adapt

some of their results to our setting, which involves the following regularity conditions on the loss

function and the data variability.

Assumption 4. The following hold for some 𝜏, 𝑐ℎ :
(1) The loss function for each data point is 𝜏2-sub-Gaussian. Namely, for any _ ∈ R, and \ ∈ Θ,

E
[
exp

(
_
(
𝑓 (\ ;𝑋 ) − E𝑋∼b [𝑓 (\ ;𝑋 )]

) ) ]
≤ exp

{𝜏2∥_∥2
2

}
.

(2) The gradient of the loss is 𝜏2-sub-Gaussian. Namely, for any _ ∈ R𝑑 , and \ ∈ Θ,

E
[
exp

〈
_,∇\ 𝑓 (\ ;𝑋 ) − E𝑋∼b [∇\ 𝑓 (\ ;𝑋 )]

〉]
≤ exp

{𝜏2∥_∥2
2

}
.

(3) The Hessian of the loss, evaluated on a unit vector, is 𝜏2-sub-exponential. Namely, for any _ ∈ R𝑑
with ∥_∥ ≤ 1, and \ ∈ Θ,

E
[
exp

{
1

𝜏2

��Z_,\ (𝑋 ) − E𝑋∼b [Z_,\ (𝑋 )]
��}] ≤ 2,

whereZ_,\ (𝑋 ) = ⟨_,∇2

\
𝑓 (\ ;𝑋 )_⟩.

(4) There exists 𝐽∗, satisfying 𝐽∗ ≤ 𝜏3𝑑𝑐ℎ , such that

E𝑋∼b
[

sup

\1,\2∈Θ,\1≠\2

∥∇\ 𝑓 (\1;𝑋 ) − ∇\ 𝑓 (\2;𝑋 )∥
∥\1 − \2∥

]
≤ 𝐽∗,

E𝑋∼b
[

sup

\1,\2∈Θ,\1≠\2

∥∇2

\
𝑓 (\1;𝑋 ) − ∇2

\
𝑓 (\2;𝑋 )∥op

∥\1 − \2∥

]
≤ 𝐽∗ .

(5) There exists \ ∗ ∈ Θ, such that ∥∇𝐹 (\ ∗)∥, ∥∇2𝐹 (\ ∗)∥op ≤ 𝐻 ≤ 𝜏3𝑑𝑐ℎ .
Assumption 4 allows us to find a close approximation of 𝐹 , which is formally defined as follows.

Definition 3.1. We say 𝐹𝑛 (\ ) is a 𝛿-approximation of 𝐹 (\ ), if both 𝐹 and 𝐹𝑛 have 𝐾 + 1 stationary

points, denoted by {\ ∗𝑖 }𝑖=0,...,𝐾 and { ˆ\ ∗𝑖 }𝑖=0,...,𝐾 , and the following inequalities hold

sup

\ ∈Θ
|𝐹 (\ ) − 𝐹𝑛 (\ ) | ≤ 𝛿, sup

\ ∈Θ
∥∇𝐹 (\ ) − ∇𝐹𝑛 (\ )∥ ≤ 𝛿,

sup

\ ∈Θ
∥∇2𝐹 (\ ) − ∇2𝐹𝑛 (\ )∥op ≤ 𝛿, and max

0≤𝑖≤𝐾
∥\ ∗𝑖 − ˆ\ ∗𝑖 ∥ ≤ 𝛿.

The next lemma characterizes the minimal sample size required to achieve a 𝛿-approximation.

Lemma 3.2. Assume that Assumptions 1 and 4 hold. Consider a given confidence level 𝜌 ∈ (0, 1)
and a given approximation accuracy 𝛿 . Let𝐶 = 𝐶0 (𝑐ℎ ∨ 1∨ log(𝜏/𝜌)) = 𝑂 ( | log 𝜌 |), where𝐶0 is some
constant, and [∗ = (𝜎3/𝜏2) ∧ ([2/𝜏4) ∧ ([4/(𝐿∗𝜏)2) = Ω(1). Then, when

𝑛 ≥ max

{𝐶𝑑𝜏2 log𝑛
𝛿2

, 4𝐶𝑑 log𝑛

(
𝜏2

𝜎2
∧ 𝜏4

[2

)
,
4𝐶𝑑 log𝑛

[2∗
,𝐶𝑑 log𝑑

}
:= 𝑛(𝛿, 𝜌, 𝑑),

with probability at least 1 − 𝜌 , 𝐹𝑛 (\ ) is a 𝛿-approximation of 𝐹 (\ ).
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The proofs of Lemma 3.2 and all subsequent results are provided in Appendix A. Lemma 3.2

shows that to achieve a 𝛿-approximation of 𝐹 (\ ) with probability 1 − 𝜌 , the required sample size is

𝑛(𝛿, 𝜌, 𝑑) = Ω̃
(
𝑑 log(1/𝜌)𝛿−2

)
. (4)

Here, Ω̃ means that we ignore the log𝑛 terms.

3.1 Performance of the sampling approach
Let F0 denote the event that using the initial point(s) constructed based on Algorithm 2, the in-house

optimization algorithm T fails to find \ ∗
0
. In this section, we establish an upper bound for P(F0).

Recall that samples of initial points are drawn from 𝜋𝛽 (\ ) defined in (1). We first show that when

𝛽 is large enough, a random sample
˜\𝛽 from 𝜋𝛽 (\ ) has a high chance to fall into B𝑟 (\ ∗0).

Proposition 3.3. Suppose Assumptions 1-4 hold and the approximation accuracy 𝛿 satisfies 𝛿 <

` ∧ 𝑟 ∧ 𝛼/4. If 𝐹𝑛 (\ ) is a 𝛿-approximation of 𝐹 (\ ) and 𝛽 = Ω(𝑟−2), for a random sample ˜\𝛽 from 𝜋𝛽 ,

P
(
˜\𝛽 ∉ B𝑟 (\ ∗0)

)
= exp(−𝛽𝛼/2 + 𝑑 log 𝛽 +𝐶𝑑 ),

where 𝐶𝑑 := 𝑑 log𝑑 + 𝑑 log(𝐻 + 𝐿∗ + 𝛿) + 3𝑑 .

Proposition 3.3 shows that P
(
˜\𝛽 ∉ B𝑟 (\ ∗0)

)
decays exponentially in 𝛽 . This probability is also

affected by 𝛼 , the optimality gap, as well as the dimension 𝑑 . In practice, we cannot choose 𝛽

arbitrarily large as we have to consider the computational cost of the associated sampling algorithm

(e.g., the rate of convergence to stationary of the MCMC algorithm). In general, when 𝛽 increases,

the difficulty of sampling from 𝜋𝛽 (\ ) increases. In practice, we want to find a 𝛽 that balances the

estimation accuracy and the sampling efficiency. We discuss this further in Section 3.3.

One challenge when applying Proposition 3.3 to the sampling approach is that in practice we

may not be able to sample from 𝜋𝛽 (\ ) exactly. Many MCMC algorithms can only draw samples

from a distribution that is “close" to 𝜋𝛽 (\ ) (e.g., ULA). To handle this issue, we impose the following

assumption as a relaxation to the requirement of sampling from 𝜋𝛽 (\ ) exactly.

Assumption 5. There is a Markov chain based sampler M̂ such that for any fixed 𝛿𝛽 ∈ [0, 1),
starting from any \0 ∈ Θ, M̂ can draw samples that satisfy ∥P(\𝑖 ∈ ·|\𝑖−1) − 𝜋𝛽 (·)∥𝑇𝑉 ≤ 𝛿𝛽 , where
\𝑖 ’s are consecutive samples from M̂.

In addition, when we draw multiple samples from a Markov chain induced by the underlying

MCMC algorithm, the samples are correlated. The following lemma justifies the quality of the

sampler M̂ under Assumption 5 even when the output \𝑖 ’s are correlated.

Lemma 3.4. Given a measurable set 𝐵 and a distribution 𝜋𝛽 with 𝜋𝛽 (𝐵) > 0, suppose there exists a
sampler M̂ satisfying Assumption 5. If we draw𝑚 samples from M̂, then

P(\1 ∉ 𝐵, . . . , \𝑚 ∉ 𝐵) ≤ (𝜋𝛽 (𝐵𝑐 ) + 𝛿𝛽 )𝑚 .
The following theorem then comes as a consequence of Proposition 3.3 and Lemma 3.4. Recall

that 𝐶𝑑 = 𝑑 log𝑑 + 𝑑 log(𝐻 + 𝐿∗ + 𝛿) + 3𝑑 .

Theorem 3.5. Consider Algorithm 2. Suppose Assumptions 1-5 hold. For an arbitrary confidence
level 𝜌 ∈ (0, 1), let 𝛿 = ` ∧ 𝑟 ∧ 𝛼/4. If the sample size 𝑛 ≥ 𝑛(𝛿, 𝜌, 𝑑) = Ω(𝑑 log(1/𝜌)𝛿−2) and the
inverse temperature 𝛽 = Ω(𝑟−2), then

P(F0) ≤ 𝜌 +
(
exp(−𝛽𝛼/2 + 𝑑 log 𝛽 +𝐶𝑑 ) + 𝛿𝛽

)𝑚
. (5)

Theorem 3.5 shows that P(F0) − 𝜌 decays exponentially fast as the inverse temperature 𝛽 or

sample size𝑚 increases.
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3.2 Performance of the optimization approaches
We first provide an analysis of the SAO approach in Algorithm 3. Let F1 denote the random event

that the output of Algorithm 3-SAO fails to find \ ∗
0
. The result is largely the same as Theorem 3.5,

although the proof is slightly more difficult.

Theorem 3.6. Consider Algorithm 3-SAO. Suppose Assumptions 1-5 hold. For an arbitrary confidence
level 𝜌 ∈ (0, 1), let 𝛿 = ` ∧ 𝑟 ∧ 𝛼/4. If the sample size 𝑛 ≥ 𝑛(𝛿, 𝜌, 𝑑) = Ω(𝑑 log(1/𝜌)/𝛿2) and the
inverse temperature 𝛽 = Ω(𝑟−2), then

P(F1) ≤ 𝜌 +
(
exp(−𝛽𝛼/2 + 𝑑 log 𝛽 +𝐶𝑑 ) + 𝛿𝛽

)𝑚
.

We next analyze the annealing approach in Algorithm 3. Let F2 be the random event that

Algorithm 3-annealing fails to find \ ∗
0
. The annealing approach needs more restrictions than the

SAO approach. This is because: in order to generate a good starting point, one of the samples needs

to be close to \ ∗
0
. Moreover, its 𝐹𝑛-value needs to be lower than the other samples. This can be

formulated as requiring a smaller radius 𝑟0 for the attraction neighborhood:

Theorem 3.7. Consider Algorithm 3-annealing. Suppose Assumptions 1-5 hold. For an arbitrary
confidence level 𝜌 ∈ (0, 1), let 𝑟0 be chosen such that 𝑟 20 sup\ ∈Θ ∥∇2𝐹 (\ )∥op < 𝛼 and 𝛿 = `∧𝑟0∧ (𝛼/4).
If the sample size 𝑛 ≥ 𝑛(𝛿, 𝜌, 𝑑) = Ω(𝑑 log(1/𝜌)/𝛿2) and the inverse temperature 𝛽 = Ω(𝑟−2

0
), then

P(F2) ≤ 𝜌 +
(
exp(−𝛽𝛼/2 + 𝑑 log 𝛽 +𝐶𝑑 ) + 𝛿𝛽

)𝑚
.

3.3 Choosing 𝑛 and 𝛽 and the computational costs
Theorems 3.5 – 3.7, combined with Lemma 3.2, provide us with insights on how to choose 𝑛 and 𝛽

to achieve a user specified confidence level 1− 𝜌 . In particular, we highlight how the required 𝑛 and

𝛽 depend on some important problem-specific parameters. Recall the following problem-specific

parameters: 1) ` quantifies the convexity of the function around the global minimum and 𝑟 measures

the size of the neighborhood around the global minimum in which 𝐹 is strongly convex. They are

introduced in Assumption 2. 𝛼 is the optimality gap, i.e., it characterizes how well separated is the

global minimum from other local minima, and is introduced in Assumption 3. 2) 𝑑 is the dimension

of \ . 3) 𝜏 quantifies the data variability and is introduced in Assumption 4. The required sample

size 𝑛 satisfies

𝑛 = Ω̃
(
log(1/𝜌)𝜏4𝑑 (` ∧ 𝑟 ∧ (𝛼/4))−2

)
We note that the required sample size 𝑛 does not depend on the population size 𝑁 . The smaller the

value of `, 𝛼 , or 𝑟 is, the larger 𝑛 needs to be. The general intuition is that if the global minimum

has a very small attraction neighborhood, or is hard to differentiate from other local minima, we

need a larger outsourcing sample. In addition, 𝑛 also needs to increase with the dimension of \ .

Lastly, the more variable the data, i.e., the larger the value of 𝜏 , the larger 𝑛 needs to be. As for 𝛽 , it

needs to satisfy

𝛽 = Ω̃
(
𝑟−2 + 𝑑/𝛼 + (𝑚𝛼)−1 log(1/𝜌)

)
.

This indicates that a smaller value of 𝑟 or 𝛼 can lead to a larger required value of 𝛽 .

Larger values of 𝑛 or 𝛽 in general lead to a larger computational cost for the external computing

facility. For example, when using ULA defined in Algorithm 1 to draw samples from 𝜋𝛽 (\ ), 𝑛 affects

the cost per update of the underlying Markov chain, i.e., the cost of evaluating ∇𝐹𝑛 (\ ) is linear in
𝑛; 𝛽 affects how fast the Markov chain converges to the target stationary distribution. Let 𝐾 (𝛽, 𝛿𝛽 )
denote the number of iterations required to achieve ∥𝜋𝛽,𝐾 −𝜋𝛽 ∥𝑇𝑉 ≤ 𝛿𝛽 , where 𝜋𝛽,𝐾 is the marginal

distribution of ULA at iteration 𝐾 . Then, the computational cost for the external computing facility

is of the order 𝑑𝑛𝐾 (𝛽, 𝛿𝛽 ). We next analyze 𝐾 (𝛽, 𝛿𝛽 ) in the context of ULA. The convergence of
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ULA has been studied under various problem settings [12, 29, 45]. For general non-convex 𝐹𝑛 (\ ),
Theorem 1 in [45] and Pinsker’s inequality imply the following bound for 𝐾 (𝛽, 𝛿𝛽 ):

Lemma 3.8. Suppose 𝜋𝛽 satisfies log Sobolev inequality with constant 𝛾𝛽 and ∇𝐹𝑛 (\ ) is 𝐿-Lipschitz.
Then for ULA with step size ℎ ≤ 𝛾𝛽𝛿2𝛽/(8𝑑𝛽𝐿

2), we have

𝐾 (𝛽, 𝛿𝛽 ) = 𝑂
(
𝑑𝐿2𝛽2 | log𝛿𝛽 |

𝛾2
𝛽
𝛿2
𝛽

)
.

Finding the constant 𝛾𝛽 can be challenging in general [35]. Meanwhile, the work [31] shows

that as 𝛽 → ∞, 𝛾𝛽 = 𝑂 (1/𝛽). This suggests that the computational cost for the external computing

facility scales as 𝑛𝑑2𝛽3 in this case.

In actual implementations, many of the parameters required in our calculation of 𝑛 and 𝛽 may not

be known (e.g., 𝛼 , 𝑟 , `). In addition to the directional insights provided by our theoretical analysis,

we also conduct some sensitivity analysis on 𝑛 and 𝛽 numerically to provide further guidance on

how to choose them in practice in Section 4.1. Overall, we find that both 𝑛 and 𝛽 have “diminishing

returns" as their value increases. We can achieve a reasonably good performance with an 𝑛 that

depends linearly on the dimension 𝑑 and 𝛽 = 𝑂 (1).
Given our discussion above, we next provide a summary of the computational costs of our

proposed data outsourcing framework. Recall that 𝑐 (T ) denotes the (worst case) computational

cost for an optimization algorithm T to find a stationary point. Similar to the sampling cost, 𝑐 (T ),
in general, depends on the choice of algorithm, the dimension 𝑑 , the size of the dataset 𝑁 , and the

value of the initial point. But in general, the dependence on these problem-specific parameters

is linear or at most polynomial. For example, if gradient descent is applied, it is well known that

the algorithm can find an 𝜖-accurate stationary point with 𝑐 (T ) = 𝑂 (𝑑𝑁 /𝜖) [33]. Since 𝐹 (\ ) is
non-convex, one may need to try many different initial points to find the global minimum. Our

proposed framework can help reduce the number of initial points required by smartly choosing

these initial points, i.e., doing more advanced exploration. This imposes extra computational costs

for the external computing facility, but saves in-house computational costs for the data organization.

In particular, consider using ULA for SIPS and ULA combined with gradient descent for OIPS-SAO.

Then

• In SIPS, the external computing facility will generate𝑚 samples with a total cost of order

𝑛𝑑2𝛽3𝑚. The data organization will spend𝑚𝑐 (T ) in the exploitation/optimization stage.

• In OIPS-SAO, the external computing facility will generate𝑚 samples with a total cost of

order 𝑛𝑑2𝛽3𝑚 + 𝑑𝑚𝑛/𝜖 . The data organization will spend 𝑐 (T ) in the optimization stage.

We note that𝑚 is in general a small number that does not depend on the problem-specific parameters.

The above computational costs are to be compared to an in-house cost of 𝑀𝑐 (T ), where 𝑀 =

Ω(𝑟−𝑑 log(1/𝜌)), when using random initialization. We also note that the external computing

facilities (e.g., cloud computing services) are in general computationally more well-equipped than

the data organization.

We conclude this section by providing two further remarks

Remark 1. Using data outsourcing and sampling-based method to find better initialization not
only increases our chance of starting in the “right" neighborhood of the global minimum, but may
also get us closer to the global minimum or other stationary points to start with when applying T . In
this case, it also helps reduce 𝑐 (T ). When applying gradient descent with a properly chosen step size
to a convex function, 𝑐 (T ) = 𝑂 (𝑑𝑁 ∥\0 − \ ∥/𝜖), and when applying it to a strongly convex function,
𝑐 (T ) = 𝑂 (𝑑𝑁 log(∥\0 − \ ∥/𝜖)) [33]. In most examples tested in our numerical experiments, the latter
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benefit is relatively small. However, for the deep neural network example in Section 4.4, this benefit
can be substantial.

Remark 2. Note that 𝑛 and 𝛽 are determined by our desired confidence level 1 − 𝜌 . In particular, it
can be interpreted as the minimum sample size and inverse temperature required to achieve the desired
accuracy. Let 𝑈1 denote the payoff of finding the optimal solution and 𝑈0 denote the payoff of not
being able to find the optimal solution. We also denote ℎ as the unit computational cost charged by the
external computing facility. Then, we can determine the optimal outsourcing sample size 𝑛(𝛿, 𝜌∗, 𝑑) by
solving the following utility maximization problem for 𝜌∗:

max

𝜌
(1 − 𝜌)𝑈1 + 𝜌𝑈0 + ℎ𝑛(𝛿, 𝜌, 𝑑)𝑑2𝛽 (𝜌, 𝑑)3𝑚

where 𝛽 (𝜌, 𝑑) = 𝐶0 (log(1/𝜌) + 𝑑)/𝛼 .

3.4 Extension to 𝜖-Global Minimum
One major constraint in our previous analysis is Assumption 3–the global minimizer is unique with

an optimality gap of 𝛼 > 0. In practice, there can be multiple local minima that have function values

very close to the global minimum. In this setting, it can be too ambitious to find the global minimum

and it may be more reasonable to find an approximately optimal solution. In particular, given a

user-specified accuracy level 𝜖 , we are interested in finding a local minimum whose objective value

is within 𝜖-distance from the optimal objective value, i.e., \ ∗𝑖 such that 𝐹 (\ ∗𝑖 ) ≤ 𝐹 (\ ∗
0
) + 𝜖 . We call

such a local minimum an 𝜖-global minimum of 𝐹 (\ ). In this subsection, we conduct performance

analysis for our algorithms to find an 𝜖-global minimum.

Let

J ∗
𝜖 =

{
𝑖 : 𝐹 (\ ∗𝑖 ) ≤ 𝐹 (\ ∗

0
) + 𝜖

}
be the index set of the 𝜖-global minima. We also introduce the “attraction region” of the 𝜖-global

minima:

Definition 3.9 (Attraction region of 𝜖-global minimums). Given an optimization algorithm T , we

define the attraction region of 𝜖-global minimums of 𝐹 (\ ) as
B∗𝜖 =

{
\ ∈ Θ : 𝐹

(
T (\ )

)
≤ 𝐹 (\ ∗

0
) + 𝜖

}
.

By definition, the optimization algorithm T converges to an 𝜖-global minimum if and only if it

starts with an initial point in B∗𝜖 . However, same as before, B∗𝜖 is hard to characterize directly. Thus,

we consider the following subset as a substitution:

B𝜖,𝑟𝜖 :=
⋃
𝑖∈J∗

𝜖

B𝑟𝜖 (\ ∗𝑖 ) ⊆ B∗𝜖 .

To be concise, we only present the analysis for the annealing-based optimization approach

(Algorithm 3-annealing). The results for the other algorithms are similar. Let F𝜖,2 be the random
event that the output of Algorithm 3-annealing fails to find an 𝜖-global minimum of 𝐹 (\ ).
Theorem 3.10. Suppose Assumptions 1, 4 and 5 hold. For any user-specified accuracy 𝜖 > 0, pick

𝑟𝜖 such that sup\ ∈Θ ∥∇2𝐹 (\ )∥op · 𝑟 2𝜖 ≤ 𝜖 . In addition, assume the approximation accuracy 𝛿 satisfies
𝛿 < ` ∧ 𝑟𝜖 ∧ 𝜖/4. For an arbitrary confidence level 𝜌 ∈ (0, 1), if the sample size 𝑛 ≥ 𝑛(𝛿, 𝜌, 𝑑) =

𝑂 (𝑑 log(1/𝜌)/𝛿2) and the inverse temperature 𝛽 = Ω(𝑟−2𝜖 ), then

P(F3𝜖,2) ≤ 𝜌 +
(
exp

(
− 𝛽𝜖/2 + 𝑑 log 𝛽 +𝐶𝑑

)
+ 𝛿𝛽

)𝑚
.

Note that Theorem 3.10 establishes a similar performance guarantee as Theorem 3.7. However,

the convergence rate in Theorem 3.10 is determined by a user-specified accuracy level 𝜖 instead of

the optimality gap 𝛼 .
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4 NUMERICAL EXPERIMENTS
In this section, we conduct numerical experiments to demonstrate the performance of our proposed

framework. We choose random start as a benchmark for comparison, which resembles the state-

of-art approach when no outsourcing is available. Our first two examples are relatively simple

problems, where the goal is to demonstrate the main ideas behind our framework. The last two

examples are more sophisticated applications.

4.1 One-dimensional Nonconvex Function
In this section, we use a one-dimensional nonconvex function to demonstrate the robustness of

our algorithms with respect to two key hyper-parameters: the outsourcing sample size 𝑛 and the

inverse temperature 𝛽 . Specifically, we consider minimizing a polynomial function of the form

𝐹 (\ ) = 𝑎\ 4 + 𝑏\ 2 + 𝑐\,

and assume the coefficients (𝑎, 𝑏, 𝑐) are unknown but we can draw samples fromN((𝑎, 𝑏, 𝑐)⊤, 𝜏2𝐼3),
whereN(𝑎, 𝑏) denotes a Gaussian distribution with mean vector 𝑎 and covariance matrix 𝑏. Let the

𝑖-th samples be denote by (𝑎𝑖 , ˆ𝑏𝑖 , 𝑐𝑖 ). With an outsourcing dataset of size 𝑛, we have the following

empirical objective:

𝐹𝑛 (\ ) =
(
1

𝑛

𝑛∑︁
𝑖=1

𝑎𝑖

)
\ 4 +

(
1

𝑛

𝑛∑︁
𝑖=1

ˆ𝑏𝑖

)
\ 2 +

(
1

𝑛

𝑛∑︁
𝑖=1

𝑐𝑖

)
\ .

In this experiment, we first set (𝑎, 𝑏, 𝑐) = (1,−5,−1), in which case 𝐹 (\ ) has two local minima,

with one being the global minimum. Since the target distribution 𝜋𝛽 (\ ) ∝ exp{−𝛽𝐹𝑛 (\ )} is one-
dimensional, we apply the acceptance-rejection method with the proposal distribution been

uniform[−2, 2] [4] to generate independent samples from 𝜋𝛽 exactly. For illustration, we focus on

the sampling procedure (SIPS) with𝑚 = 1 and study the effect of 𝑛 and 𝛽 . In what follows, we refer

to the probability of falling into the attraction basin of the global minimum as the success probability,

i.e., it is the probability that starting from the given initial point, the in-house optimization finds

the global minimum. 1000 replications are used in each scenario to estimate the success probability.

Figures 2 (a) and (c) show that the success probability increases as 𝛽 increases. However, there

is a diminishing return. In this example, 𝛽 = 1 already leads to very good performance (>90%

success probability) for different values of 𝑛 and 𝜏 . In addition, given a target success probability,

the (minimum) required 𝛽 decreases with the outsource sample size 𝑛, and increases with the

sample noise 𝜏 . Figure 2 (b) shows that the success probability increases as 𝑛 increases, but there is

again a diminishing return. In this example, 𝑛 = 50 already leads to very good performance as long

as 𝛽 is large enough, i.e., 𝛽 ≥ 1. When 𝛽 is too small, i.e., 𝛽 = 0.5, the success probability converges

to around 80% as 𝑛 increases, and increasing 𝑛 beyond 50 has almost no impact on improving the

success probability. Lastly, Figure 2 (d) tests very large values of 𝜏 and shows that when the data are

very noisy, we need a substantially larger outsourcing sample size to achieve good performance.

We next study the effect of the geometry of the objective function. In particular, we study the

robustness of 𝛽 and 𝑛 when we vary the optimality gap 𝛼 or the radius 𝑟 of B𝑟 (\ ∗0) in Assumptions

2 and 3. We observe from Figures 3 (a) – (c) that as the optimality gap 𝛼 decreases, larger 𝑛 and 𝛽

are required to achieve a good success probability. Figures 3 (d) – (f) show that 𝑟 does not affect

the performance of 𝑛 or 𝛽 much. This could be because, in this example, the size of the attraction

region B∗
0
does not change as 𝑟 decreases.
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(a) Sensitivity of 𝛽 ( 𝜏 = 5)
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(c) Sensitivity of 𝛽 (𝑛 = 100)
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(d) Sensitivity of 𝑛 ( 𝛽 = 1.5)

Fig. 2. Sensitivity analysis for 𝑛 and 𝛽 for different values of 𝜏

4.2 Gaussian Mixture Density
We study the problem of finding the mode with the largest probability density of a Gaussian mixture

model using kernel density estimation. In particular, consider the objective function

𝐹 (\ ) = E𝑋
[
(2𝜋𝜏)−𝑑/2 · exp

{
− ∥\ − 𝑋 ∥2

2𝜏2

}]
.

We assume 𝑋 follows a Gaussian mixture distribution, that is, 𝑋 ∼ N(𝑐𝑖 , 𝜏2𝐼𝑑 ) with probability

𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝐽 , where the mixing weights 𝑝𝑖 satisfy 0 < 𝑝𝑖 < 1 and

∑𝐽

𝑖=1
𝑝𝑖 = 1. When 𝑐𝑖 ’s are

well-separated, 𝐹 (\ ) has multiple local minima located near 𝑐𝑖 ’s. In this case, the selection of the

initial point is critical in optimizing 𝐹 (\ ).
We start with an example with 𝑑 = 5 and 𝐽 = 10, and implement SIPS, OIPS-annealing, and

OIPS-SAO with 𝑛 = 100, 𝛽 = 2, and𝑚 = 50. To draw samples from 𝜋𝛽 (\ ), we use ULA with stepsize

ℎ = 0.1 and run 1000 iterations in total. For OIPS-SAO, we further apply gradient descent (GD)

for 100 iterations to obtain T̂ (\𝑖 ), 𝑖 = 1, . . . ,𝑚. We also consider two benchmarks: random start

with a single initial point (to be compared to OIPS) and random start with𝑚 = 50 initial points (to

be compared to SIPS). For the in-house optimization, i.e., to optimize 𝐹 (\ ), given an initial point,

we apply GD, where the gradient is estimated using the batch mean with batch size 1000. In this

optimization phase, we run 20 iterations of GD and take the objective value at the last iteration

as the convergent function value. Figure 4 shows the distribution of convergent function values

under different algorithms based on 100 replications of each algorithm. We observe that SIPS and
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(b) Sensitivity of 𝛽 (𝑛 = 100)
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(c) Sensitivity of 𝑛 (𝛽 = 2)
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(f) Robustness of 𝑛

Fig. 3. Sensitivity analysis of 𝑛 and 𝛽 for different values of 𝛼 and 𝑟

OIPS outperform their corresponding random start benchmarks significantly. In particular, when

comparing random start from multiple initial points with SIPS, the average convergent objective

values are −16.7 and −25.3 respectively (p-value = 0.000). When comparing random start with a

single initial point to OIPS-annealing, the average convergent objective values are 0.71 and −29.8
respectively (p-value = 0.000). OIPS-SAO is achieving even better performance with an average

convergent objective value of −32.5.
We further test the performance of our algorithm for different problem dimensions. In particular,

we fix the number of modes 𝐽 = 3 and vary 𝑑 from 10 to 35. Motivated by our theoretical analysis,

we set the outsourcing sample size at 𝑛 = 4𝑑 , i.e., linear in 𝑑 . We fix 𝛽 = 2. For simplicity of

demonstration, we only OIPS-annealing algorithm with a single random start (both require only

a single round of in-house optimization). Figure 5 shows the distribution of convergent function

values under different algorithms based on 100 replications of each algorithm. We observe that in all

scenarios tested, the OIPS-annealing algorithm finds the global minimum with a high probability,

suggesting 𝑛 = 4𝑑 is a good outsourcing sample size choice in this case. In addition, OIPS-annealing

outperforms the random start benchmark significantly.

4.3 Generalized multinomial logit model
We study an application of our algorithms for maximum likelihood estimation of the generalized

multinomial logit (GMNL) model. The multinomial logit model (MNL) is a classic model to study

consumer choices. GMNL is an extension of MNL, which accommodates the scaling heterogeneity

in utility coefficients through an individual-specific scaling factor [14]. Such a generalization makes

the negative log-likelihood function nonconvex. In practice, GD or BFGS with random starts is

employed for the estimation [43].
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Fig. 4. Histogram of convergent function values of mixture Gaussian density (𝑑 = 5, 𝐽 = 10).
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Fig. 5. Histogram of convergent function values of mixture Gaussian density under OIPS-annealing versus
random start (𝐽 = 3, 𝑑 varies from 10 to 35).

Suppose that there are 𝐽 products. The utility that customer 𝑖 chooses alternative 𝑗 is 𝑈𝑖 𝑗 =

𝑥⊤𝑗 𝜙𝑖 + 𝜖𝑖 𝑗 , where 𝑥 𝑗 is a 𝑝-dimensional vector of the attributes of product 𝑗 , 𝜙𝑖 ∈ R𝑝 is the vector of
utility coefficients, and 𝜖𝑖 𝑗 is an idiosyncratic error term that follows a standard Gumbel distribution.

The customer chooses the product with the highest utility and the probability of choosing product
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𝑘 is 𝑃𝑖𝑘 = exp(𝑥⊤
𝑘
𝜙𝑖 )/

∑𝐽

𝑗=1
exp(𝑥⊤𝑗 𝜙𝑖 ). In GMNL, 𝜙𝑖 = exp{𝑧⊤𝑖 𝜓 + a𝑖 }𝜙 , where 𝑧𝑖 is a 𝑞-dimensional

vector of customer characteristics, 𝜓 is a 𝑞-dimensional heterogeneity coefficient, and a𝑖 is an

independent random shock that follows the standard Gaussian distribution. Let the binary variable

𝑦𝑖 𝑗 ∈ {0, 1} denote whether customer 𝑖 chooses product 𝑗 . Then the likelihood for customer 𝑖 is

𝐿𝑖 = E
[ 𝐽∏
𝑘=1

(
exp(𝑥⊤

𝑘
𝜙𝑖 )∑𝐽

𝑗=1
exp(𝑥⊤

𝑗
𝜙𝑖 )

)𝑦𝑖𝑘 ]
.

We use simulation, i.e., simulated data, to approximate the above expectation. The model parameter

\ = (𝜙,𝜓 ) can be estimated by minimizing the empirical negative log-likelihood function

𝐹 (\ ) = − 1

𝑁

𝑁∑︁
𝑖=1

log

(
1

𝑅

𝑅∑︁
𝑟=1

𝐽∏
𝑘=1

(
exp(𝑥⊤

𝑘
𝜙
[𝑟 ]
𝑖

)∑𝐽

𝑗=1
exp(𝑥⊤

𝑗
𝜙
[𝑟 ]
𝑖

)

)𝑦𝑖𝑘 )
, (6)

where 𝜙
[𝑟 ]
𝑖

= exp{𝑧⊤𝑛𝜓 + a [𝑟 ]𝑛 }𝜙 , which is the 𝑟 -th draw from the distribution of 𝜙𝑖 , and 𝑅 is the

total number of random draws. In our experiment, we use 𝑅 = 100.

We consider an instance with dimension parameters 𝑝 = 10, 𝑞 = 5, and 𝐽 = 5 products, i.e.,

𝑑 = 𝑝 + 𝑞 = 15. We set the true parameters 𝜙∗ = (1, . . . , 1,−1, . . . ,−1) and 𝜓 ∗ = (1, . . . , 1), and
generate product attributes 𝑥 𝑗 and agent characteristics 𝑧𝑖 from the standard Gaussian distribution.

Then, we simulate the agents’ choices using the GMNL model and obtain choice data 𝑦𝑖 𝑗 . The

generated data contain 𝑁 = 1000 customers and takes the form {𝑥 𝑗 , 𝑧𝑖 , 𝑦𝑖 𝑗 }1≤𝑖≤𝑁,1≤ 𝑗≤𝐽 .
For the outsourcing exploration, we apply OIPS-annealing and OIPS-SAO with 𝑛 = 100, 𝛽 = 2,

and𝑚 = 50. To sample from 𝜋𝛽 (\ ), we apply ULA with step size 0.1 and run 𝐾 = 1000 iterations in

total. For OIPS-SAO, we further apply GD with 500 iterations to find T̂ (\𝑖 ), 𝑖 = 1, . . . ,𝑚. For the

in-house optimization, we apply GD with stepsize 0.1 to optimize the negative log-likelihood (6).

We run GD for 100 iterations, and take the objective value at the last iteration as the convergent

function value. We choose random start with a single initial point as the benchmark when no

outsourcing is available. Figure 6 shows the distribution of convergent objective values based on 500

repetitions of the algorithms. We observe that OIPS-SAO and OIPS-annealing outperform random

start significantly. In particular, comparing random start to OIPS-annealing, the average convergent

objective values are 5.28 and 2.55 respectively (p-value = 0.000). OIPS-SAO is performing even

better with an average convergent value of 2.09.

We can also compare the computational costs for the external computing facility under different

exploration strategies. For random start, we incur zero cost. For OIPS-annealing, the computation

cost for the external computing facility is 𝑑𝑛𝐾 = 1.5 × 10
6
. For OIPS-SAO, the computational cost

for the external computing facility is 𝑑𝑛𝐾 + 500𝑑𝑚𝑛 = 3.9 × 10
7
.
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Fig. 6. Histogram of negative log-likelihood of GMNL model
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4.4 Image identification with deep neural network
In this section, we consider a classic image classification problem using convolutional neural

networks (CNN). When training CNN, we need to minimize a nonconvex loss function of a very

high dimension. The most commonly used initialization in the literature is random start (Gaussian

or uniform initialization) [19]. In this section, we compare our outsourcing idea with random start.

In particular, we train a CNN to classify the handwritten numbers 0-9 based on 28 × 28 digit

images from the dataset – MNIST, which contains 10000 images. We consider a CNN with three

convolutional layers, three batch normalization layers, and one fully connected layer. For the 𝑖-th

convolutional layer, 𝑖 = 1, 2, 3, the number of filters is 2
(𝑖+2)

with size 3 × 3. Max pooling is used

together with the ReLU activation function. For the final fully connected layer, we use the Softmax

activation function for classification. Overall, our CNN contains 21690 parameters. In other words,

we need to solve an optimization problem of dimension 21690. Lastly, we split 80% data as the

training set and 20% as the testing set. Cross-entropy is used as the loss function.

We implement OIPS-annealing and OIPS-SAO with 𝑛 = 1000, 𝛽 = 2, and𝑚 = 50, and compare

their performance with the random start (with a single initialization) benchmark. To sample from

𝜋𝛽 (\ ), ULA with stochastic gradient is applied. For OIPS-SAO, we further run stochastic gradient

descent with 15 iterations to optimize 𝐹𝑛 . For the in-house optimization, we use stochastic gradient

descent with momentum, and we run the algorithm for 50 iterations. All stochastic gradients are

based on batch means with a batch size of 128. Here we use a stochastic gradient instead of the full

gradient, because this is a state-of-art approach.

We implement the procedure 100 times and plot the averages performance metrics (the value

of the objective function (cross-entropy) on the training set and the corresponding accuracy on

the testing set) at different iterations in the in-house optimization stage in Figure 7. We observe

that OIPS-SAO and OIPS-annealing achieve better training loss and testing accuracy over random

start, with OIPS-SAO performing the best. The performance improvement of our procedures is

the largest when the number of iterations at the in-house optimization stage is small, and it gets

smaller as the number of iterations gets larger. The energy landscape of the loss function of Neural

Networks is less well-understood, but it has been shown that there can be multiple local minima

with near-optimal performance (see, e.g., [16]). If this is the case, the main advantage of using

outsourcing for initialization is to get us closer to a good local minimum. That is why we see a

large performance improvement over random start when the number of iterations is small. In this

case, outsourcing is most beneficial when the in-house computing resource is very limited and the

data organization can only run a relatively small number of iterations.

In terms of computational cost, we run this experiment on a computer where the CPU is an Intel
®

Xeon
®
Processor E-2286M (8-cores 2.40-GHz Turbo, 16 MB). The GPU is Nvidia Quadro RTX 4000

w/8GB. In the outsourcing stage, it takes on average 118 and 828 seconds to run OIPS-annealing

and OIPS-SAO respectively. For the in-house optimization stage, it takes on average 30 seconds

to run 50 iterations of stochastic gradient descent with momentum. Note that even though the

computational cost at the exploration stage is relatively large, this cost is incurred at the external

computing facility where computational resources can be much cheaper.

Lastly, to test the robustness of our method, we implement OIPS-annealing and OIPS-SAO with

different values of 𝑛 and 𝛽 . In particular, we vary the outsourcing sample size 𝑛 from 800 to 1200

and the inverse temperature 𝛽 from 1 to 3. Tables 1 and 2 summarize the results. Overall, we observe

similar performances for different values of 𝑛 and 𝛽 , with only a small amount of performance

improvement as 𝑛, 𝛽 increasing. This demonstrates that our method is quite robust to the choice of

𝑛 and 𝛽 in a reasonable range.
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Fig. 7. Evolution of training loss and accuracy on testing set

Table 1. Sensitivity analysis of the OIPS-annealing algorithm

outsourcing sample size 𝑛 800 800 800 1000 1000 1000 1200 1200 1200

inverse temperature 𝛽 1 2 3 1 2 3 1 2 3

training loss 0.42 0.42 0.41 0.42 0.43 0.40 0.43 0.43 0.41

accuracy on testing(%) 87.8 87.79 87.43 87.85 87.28 87.79 87.52 87.5 88.29

Table 2. Sensitivity analysis of the OIPS-SAO algorithm

outsourcing sample size 𝑛 800 800 800 1000 1000 1000 1200 1200 1200

inverse temperature 𝛽 1 2 3 1 2 3 1 2 3

training loss 0.20 0.19 0.18 0.17 0.17 0.15 0.14 0.13 0.12

accuracy on testing(%) 95.85 95.77 95.6 96.32 96.17 96.05 96.52 96.82 96.74

5 CONCLUSION, LIMITATIONS, FUTUREWORK
We have designed three algorithms using outsourced data to find good initial points. They are better

than the popular random start approach. In both theoretical analysis and numerical tests, OIPS-SAO

performs better than OIPS-annealing, but has higher computational costs in general. Our proposed

approach is most beneficial when the underlying objective function/loss function is smooth but

non-convex and the global minimum leads to a much smaller loss than other local minima, i.e., there

is a strong motivation to find the global minimum. Our approach saved the number of initializations

the data organization needs to try in-house to find the global minimum. We note that in some

machine learning tasks, such as matrix completion and wide neural networks, local minima already

have good statistical properties or prediction power [16, 34]. In these situations, our proposed

approach can get us closer to a local minimum to start with, but the benefit would not be as

substantial as in the former cases.

Our work has the following three limitations, which can be seen as possible future directions.

1) Our theoretical development provides important insights on how to use data outsourcing to

achieve better initialization, including how to choose the outsourcing data size and how to design
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sampling algorithms for the outsourced computing facility. However, the optimal choice of 𝑛 and

𝛽 depends on problem-specific characteristics that may not be fully known to us (e.g., strong

convexity parameter), which limits our ability to fully optimize the choice of 𝑛 and 𝛽 in practice. It

would be interesting to take a more algorithmic approach to fine-tune these parameters in future

research. 2) We assume the outsourced data is drawn randomly from the population data. In practice,

the outsourced data might be from a biased distribution or need additional privacy encryption.

3) Our analysis focuses on the large 𝛽 scenario. In practice, we would prefer to use a moderate

𝛽 , i.e., 𝛽 = 𝑂 (1), due to the sampling cost. For the sampling task, there are two main challenges:

multi-modality due to the non-convexity of 𝐹 (\ ) and high-dimensionality, both of which are active

areas of research. Various advanced sampling methods have been developed in the literature to

address these challenges in special cases [20, 41, 42], which can be utilized in the outsourcing

exploration stage for more efficient sampling.
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A TECHNICAL VERIFICATIONS
A.1 Approximation accuracy of 𝐹𝑛 (\ ) and data complexity
Proof of Lemma 3.2. To prove the results about gradient and Hessian convergence, we can

apply Theorem 1 in [30] directly. Specifically, under Assumptions 1 and 4, when 𝑛 > 𝐶𝑑 log(𝑑),
with probability at least 1 − 𝜌 , we have

sup

\ ∈Θ
∥∇𝐹 (\ ) − ∇𝐹𝑛 (\ )∥ ≤ 𝜏

√︂
𝐶𝑑 log(𝑛)

𝑛
,

sup

\ ∈Θ
∥∇2𝐹 (\ ) − ∇2𝐹𝑛 (\ )∥op ≤ 𝜏2

√︂
𝐶𝑑 log(𝑛)

𝑛
.

(7)

For the stationary points convergence, based on Theorem 2 in [30], under Assumptions 1 and 4,

when 𝑛 ≥ 4𝐶𝑑 log(𝑛) · ((𝜏2/𝜎2) ∨ (𝜏4/[2)), the empirical loss function 𝐹𝑛 (\ ) is (𝜎/2, [/2)-strongly
Morse and possesses 𝐾 + 1 stationary points with probability at least 1 − 𝜌 . Furthermore, there is a

one-to-one correspondence between (\ ∗
0
, . . . , \ ∗

𝐾
), the stationary points of 𝐹 (\ ), and ( ˆ\ ∗

0
, . . . , ˆ\ ∗

𝐾
),

the stationary points of 𝐹𝑛 (\ ). Moreover, when 𝑛 ≥ 4𝐶𝑑 log(𝑛)/[2∗ ,

max

0≤𝑖≤𝐾
∥\ ∗𝑖 − ˆ\ ∗𝑖 ∥ ≤ 2𝜏

[

√︂
𝐶𝑑 log(𝑛)

𝑛
. (8)

It remains to establish the uniform convergence result for 𝐹𝑛 . Although it is not directly available

in [30], the proof follows a similar idea. For self-completeness, we provide the details here.

First of all, given the parameter space Θ, let ΘY := {\1, . . . , \ 𝐽 } be a Y-covering net. In other words,

for arbitrary \ ∈ Θ, there exists certain \ 𝑗 (\ ) ∈ ΘY such that ∥\ − \ 𝑗 (\ ) ∥ ≤ Y. Thus, for any \ ∈ Θ,
we have ��𝐹𝑛 (\ ) − 𝐹 (\ )�� ≤ ��𝐹𝑛 (\ ) − 𝐹𝑛 (\ 𝑗 (\ ) )�� + ��𝐹𝑛 (\ 𝑗 (\ ) ) − 𝐹 (\ 𝑗 (\ ) )�� + ��𝐹 (\ ) − 𝐹 (\ 𝑗 (\ ) )��. (9)

For any 𝑡 > 0, we denote by

𝐴𝑡 =

{
sup

\ ∈Θ

��𝐹𝑛 (\ ) − 𝐹𝑛 (\ 𝑗 (\ ) )�� ≥ 𝑡/3}, 𝐵𝑡 = {
sup

\ 𝑗 ∈ΘY

��𝐹𝑛 (\ 𝑗 ) − 𝐹 (\ 𝑗 )�� ≥ 𝑡/3},
and 𝐶𝑡 =

{
sup

\ ∈Θ

��𝐹 (\ ) − 𝐹 (\ 𝑗 (\ ) )�� ≥ 𝑡/3}.
Then we have

P
(
sup

\ ∈Θ

��𝐹𝑛 (\ ) − 𝐹 (\ )�� ≥ 𝑡 ) ≤ P(𝐴𝑡 ) + P(𝐵𝑡 ) + P(𝐶𝑡 ).

In the next, we upper bound the three parts in above inequality respectively. For the last part, we

have ��𝐹 (\ ) − 𝐹 (\ 𝑗 (\ ) )�� ≤ sup

\ ∈Θ
∥∇𝐹 (\ )∥ · ∥\ − \ 𝑗 (\ ) ∥ ≤ 𝐿∗ · Y.
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Hence, when 𝑡 ≥ 3Y𝐿∗, the deterministic event 𝐶𝑡 would never happen and P(𝐶𝑡 ) = 0. For the

second part, under Assumption 4, by applying the union bound and the sub-Gaussian concentration

inequality, we have

P(𝐵𝑡 ) ≤
��ΘY �� · 𝑃 (��𝐹𝑛 (\ 𝑗 ) − 𝐹 (\ 𝑗 )�� ≥ 𝑡/3)

≤ |ΘY | · exp
{
− 𝑛𝑡2/(18𝜏2)

}
≤ (2/Y)𝑑 · exp

{
− 𝑛𝑡2/(18𝜏2)

}
.

Thus, when

𝑡 > 5𝜏 ·
√︂

log(2/𝜌) + 𝑑 log(2/Y)
𝑛

,

we have P(𝐵𝑡 ) ≤ 𝜌/2. For the first part, by Markov inequality, we have

P(𝐴𝑡 ) ≤
3E

[
sup\ ∈Θ |𝐹𝑛 (\ ) − 𝐹𝑛 (\ 𝑗 (\ ) ) |

]
𝑡

≤
3Y · E

[
sup\ ∈Θ ∥∇𝐹𝑛 (\ )∥

]
𝑡

.

By Assumption 4, we have

E
[
sup

\ ∈Θ
∥∇𝐹𝑛 (\ )∥

]
≤ E

[
sup

\ ∈Θ
∥∇𝐹𝑛 (\ ) − ∇𝐹𝑛 (\ ∗)∥

]
+ E

[
∥∇𝐹𝑛 (\ ∗)∥

]
≤ 2𝐽 ∗ + 𝐻,

which implies that

P(𝐴𝑡 ) ≤ 3Y (2𝐽 ∗ + 𝐻 )/𝑡 .
Taking 𝑡 ≥ 6Y (2𝐽 ∗ + 𝐻 )/𝜌 , we have P(𝐴𝑡 ) ≤ 𝜌/2.

Finally, by taking

Y∗ = 𝜌𝜏/(6𝑑𝑛(2𝐽 ∗ + 𝐻 )), 𝑡∗ = 5𝜏
√︁
(log(2/𝜌) + 𝑑 log(2/Y))/𝑛,

and utilizing the fact that 𝐻 ≤ 𝜏2𝑑𝑐ℎ , 𝐽∗ ≤ 𝜏3𝑑𝑐ℎ , when 𝑛 ≥ 𝐶𝑑 log(𝑑), we have

P

(
sup

\ ∈Θ

��𝐹𝑛 (\ ) − 𝐹 (\ )�� ≥ 𝜏√︂𝐶𝑑 log(𝑛)
𝑛

)
≤ 𝜌.

Now, given an approximation accuracy 𝛿 , when

𝑛 ≥ max

{
𝐶𝑑𝜏2 log𝑛/𝛿2, 4𝐶𝑑 log𝑛((𝜏2/𝜎2) ∧ (𝜏4/[2)), 4𝐶𝑑 log𝑛/[2∗,𝐶𝑑 log𝑑

}
,

we have

sup

\ ∈Θ
|𝐹 (\ ) − 𝐹𝑛 (\ ) | ≤ 𝛿, sup

\ ∈Θ
∥∇𝐹 (\ ) − ∇𝐹𝑛 (\ )∥ ≤ 𝛿,

sup

\ ∈Θ
∥∇2𝐹 (\ ) − ∇2𝐹𝑛 (\ )∥op ≤ 𝛿, and max

0≤𝑖≤𝐾
∥\ ∗𝑖 − ˆ\ ∗𝑖 ∥ ≤ 𝛿.

with probability at least 1 − 𝜌 . □

A.2 Performance analysis of the sampling approach
Proof of Proposition 3.3. First note that when 𝐹𝑛 (\ ) is a 𝛿-approximation, for any \ ∉ B𝑟 (\ ∗0),

by Assumption 3 we have

𝐹𝑛 (\ ) − 𝐹𝑛 (\ ∗0) ≥
(
𝐹 (\ ) − 𝛿

)
−

(
𝐹 (\ ∗

0
) + 𝛿

)
≥ 𝛼 − 2𝛿 > 0.
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Hence, by the definition of 𝜋𝛽 , we have

P
(
˜\𝛽 ∈ B𝑟 (\ ∗0)

)
=

∫
B𝑟 (\ ∗

0
) exp(−𝛽𝐹𝑛 (\ ))𝑑\∫

B𝑟 (\ ∗
0
) exp(−𝛽𝐹𝑛 (\ ))𝑑\ +

∫
Θ/B𝑟 (\ ∗

0
) exp(−𝛽𝐹𝑛 (\ ))𝑑\

=

∫
B𝑟 (\ ∗

0
) exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\

∗
0
)])𝑑\∫

B𝑟 (\ ∗
0
) exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\

∗
0
)])𝑑\ +

∫
Θ/B𝑟 (\ ∗

0
) exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\

∗
0
)])𝑑\

≥

∫
B𝑟 (\ ∗

0
) exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\

∗
0
)])𝑑\∫

B𝑟 (\ ∗
0
) exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\

∗
0
)])𝑑\ + exp(−𝛽 (𝛼 − 2𝛿)) · Vol(Θ/B𝑟 (\ ∗

0
))
,

where Vol(Θ/B𝑟 (\ ∗0)) denotes the volume of set Θ/B𝑟 (\ ∗0).
On the other hand, based on the regularity condition of Hessian and the definition of 𝛿-

approximation, we have ∥∇2𝐹𝑛 (\ )∥op ≤ 𝐻 + 𝐿∗ + 𝛿 . As a result, for any \ ∈ B𝑟 (\ ∗0),

𝐹𝑛 (\ ) − 𝐹𝑛 (\ ∗0) ≤ 2(𝐻 + 𝐿∗ + 𝛿) ·
(
∥\ − \ ∗

0
∥2

)
.

Hence, ∫
B𝑟 (\ ∗

0
)
exp

(
− 𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\ ∗0)]

)
𝑑\ ≥

∫
B𝑟 (\ ∗

0
)
exp

(
− 2𝛽 (𝐻 + 𝐿∗ + 𝛿)∥\ − \ ∗

0
∥2

)
𝑑\

=

(
𝜋𝛽−1/(𝐻 + 𝐿∗ + 𝛿) ·

(
Ψ(2𝑟

√︁
𝛽 (𝐻 + 𝐿∗ + 𝛿))) − 1/2

) )𝑑
,

where Ψ(·) denotes the CDF of standard normal distribution. Note that for 𝛽 ≥ (𝐻 + 𝐿∗ + 𝛿)−1𝑟−2,
Ψ

(
2𝑟

√︁
𝛽 (𝐻 + 𝐿∗ + 𝛿)

)
− 1/2 ≥ Ψ(1) − 1/2. Then, for 𝐶𝑑 = 𝑑 log𝑑 + 𝑑 log(𝐻 + 𝐿∗ + 𝛿) + 3𝑑 ,

1 − P
(
˜\𝛽 ∈ B𝑟 (\ ∗0)

)
≤ exp

(
− 𝛽

(
𝛼 − 2𝛿

)
+ 𝑑 log 𝛽 +𝐶𝑑

)
.

Finally, by setting 𝛿 = 𝛼/4, we obtain the result. □

Proof of Lemma 3.4. Let \1, . . . , \𝑚 be samples from M̂. Let G𝑙 denote the 𝜎-algebra generated
by {\1, . . . , \𝑙 }. For any measurable set 𝐵

P(\1 ∉ 𝐵, . . . , \𝑚 ∉ 𝐵) = E
[ 𝑚∏
𝑖=1

1(\𝑖∉𝐵)
]

= E
[𝑚−1∏
𝑖=1

1(\𝑖∉𝐵) · P(\𝑚 ∉ 𝐵 |G𝑚−1)
]

≤ E
[𝑚−1∏
𝑖=1

1(\𝑖∉𝐵) · (𝜋𝛽 (𝐵𝑐 ) + 𝛿𝛽 )
]
by Assumption 5

= (𝜋𝛽 (𝐵𝑐 ) + 𝛿𝛽 ) · P(\1 ∉ 𝐵, . . . , \𝑚−1 ∉ 𝐵),

where 𝐵𝑐 is the complement of 𝐵. By induction, we have

P(\1 ∉ 𝐵, . . . , \𝑚 ∉ 𝐵) ≤ (𝜋𝛽 (𝐵𝑐 ) + 𝛿𝛽 )𝑚 .

□
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Proof of Theorem 3.5. WeuseI𝑛 (𝛿) to denote the random event that 𝐹𝑛 (\ ) is a𝛿-approximation

of 𝐹 (\ ). First, based on Proposition 3.3, P(I𝑐𝑛 (𝛿)) ≤ 𝜌 for 𝑛 ≥ 𝑛(𝛿, 𝜌, 𝑑). Then,

P(F0) − 𝜌 ≤ P
(
F0 ∩ 𝐼𝑛 (𝛿)

)
≤ P

(
F0 |𝐼𝑛 (𝛿)

)
.

By the definition of 𝛿-approximation, conditional on I(𝛿), if at least one of (\1, · · · , \𝐿) falls into
B𝑟 (\ ∗0), F0 would not happen. Hence, by Lemma 3.4, we have

P(F0 |I𝑛 (𝛿)) ≤
(
𝜋𝛽 (B𝑐𝑟 (\ ∗0)) + 𝛿𝛽

)𝑚
Based on Lemma 3.3, for 𝛽 = Ω(𝑟−2),

𝜋𝛽 (B𝑐𝑟 (\ ∗0)) ≤ exp(−𝛽𝛼/2 + 𝑑 log 𝛽 +𝐶𝑑 ).

for some constant 𝐶 . Then,

P(F0) ≤ 𝜌 +
(
exp(−𝛽𝛼/2 + 𝑑 log 𝛽 +𝐶𝑑 ) + 𝛿𝛽

)𝑚
.

for some constant 𝐶 > 0, and we finish the proof. □

A.3 Performance analysis of the optimization approaches
In this section, we establish the performance guarantee of the optimization approach, i.e., Algorithm

3. We first analyze the sample selection rule with the SAO approach, which set \ 0∗ = T̂ (\ 0
𝑖∗ ) where

𝑖∗ = argmin
1≤𝑖≤𝐿

{
𝐹𝑛 (T̂ (\ 0𝑖 ))

}
.

Proof of Theorem 3.6. Under Assumption 2, 𝐹 (\ ) is `-strongly convex in B𝑟 (\ ∗0). When 𝛿 < `

and 𝐹𝑛 (\ ) is a 𝛿-approximation, we have

sup

\ ∈Θ
∥∇2𝐹 (\ ) − ∇2𝐹𝑛 (\ )∥op ≤ 𝛿 and ∥ ˆ\ ∗

0
− \ ∗

0
∥ ≤ 𝛿.

This implies that 𝐹𝑛 (\ ) is (` −𝛿)-strongly convex in B𝑟 (\ ∗0) and ˆ\ ∗
0
is the unique minimum of 𝐹𝑛 (\ )

in B𝑟 (\ ∗0). Hence, starting from any \ ∈ B𝑟 (\ ∗0), the optimization algorithm T̂ can converge to
ˆ\ ∗
0
,

which implies that

P(T̂ ( ˜\𝛽 ) ≠ ˆ\ ∗
0
) ≤ P( ˜\𝛽 ∉ B𝑟 (\ ∗0)) .

Then Proposition 3.3 provides an upper bound for P(T̂ ( ˜\𝛽 ) ≠ ˆ\ ∗
0
). Finally, note that if at least one

of \1, \2, . . . , \𝑚 falls into B𝑟 (\ ∗0), ˆ\ ∗0 can be found by T̂ and will be selected as the initial point to

optimize 𝐹 (\ ). Thus, P(F1) ≤ P(F0). By Theorem 3.5, we obtain the upper bound for P(F1). □

Proof of Theorem 3.7. We first show that if at least one point of (\1, . . . , \𝑚) is in B𝑟0 (\ ∗0), the
annealing approach would select a point that falls into B𝑟0 (\ ∗0). When 𝐹𝑛 (\ ) is a 𝛿-approximation

of 𝐹 (\ ), if \𝑖 ∈ B𝑟0 (\ ∗0), for any \ 𝑗 ∉ B𝑟0 (\ ∗0), we have

𝐹𝑛 (\𝑖 ) ≤ 𝐹 (\𝑖 ) + 𝛿 ≤ 𝐹 (\ ∗
0
) + 𝛿 + 1

2

𝑟 2
0
· sup
\ ∈Θ

∥∇2𝐹 (\ )∥op

< 𝐹 (\ ∗
0
) + 𝛿 + 𝛼

2

≤ 𝐹 (\ 𝑗 ) −
𝛼

2

+ 𝛿 by Assumption 3

< 𝐹𝑛 (\ 𝑗 ) as 𝛿 ≤ 𝛼/4.

Hence, if the algorithm selects some \ 𝑗 ≠ \𝑖 , we must have 𝐹𝑛 (\ 𝑗 ) ≤ 𝐹𝑛 (\𝑖 ), which implies that \ 𝑗
is in B𝑟0 (\ ∗0) as well. The remaining proof follows the same line of arguments as Theorem 3.5. □
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A.4 Convergence analysis of ULA
Proof of Lemma 3.8. By Pinsker inequality, to bound the total variation distance by 𝛿𝛽 , it suffices

to ensure that KL(𝜋𝛽,𝐾 | |𝜋𝛽 ) ≤ 2𝛿2
𝛽
, where KL denotes the Kullback–Leiber divergence.

Next, Theorem 1 in [45] indicates the 2𝛿2
𝛽
-bound for the KL divergence can be achieved by setting

ℎ =
𝛾𝛽𝛿

2

𝛽

8(𝐿𝛽)2𝑑 and 𝐾 = Θ

(
1

𝛾𝛽ℎ
| log𝛿𝛽 |

)
= Θ

(
𝑑𝐿2𝛽2 | log𝛿𝛽 |

𝛾2
𝛽
𝛿2
𝛽

)
.

Note that 𝐿𝛽 is the Lipschitz constant for ∇ log𝜋𝛽 . □

A.5 Performance analysis for extension to 𝜖-Global Minimum
Proof of Theorem 3.10. For Algorithm 3-annealing, note that if there is a sample\𝑖 ∈ B𝑟𝜖 (\ ∗𝑖 ) ⊆

B𝜖,𝑟𝜖 , then we have

𝐹𝑛 (\𝑖 ) ≤ 𝐹 (\𝑖 ) + 𝛿 ≤ 𝐹 (\ ∗𝑖 ) + sup

\ ∈Θ
∥∇2𝐹 (\ )∥op · 𝑟 2𝜖 + 𝛿 ≤ 𝐹 (\ ∗

0
) + 2𝜖 + 𝛿.

Next, if the algorithm pick \ 𝑗 for 𝑗 ≠ 𝑖 , then

𝐹 (\ 𝑗 ) ≤ 𝐹𝑛 (\ 𝑗 ) + 𝛿 ≤ 𝐹𝑛 (\𝑖 ) + 𝛿 ≤ 𝐹 (\ ∗
0
) + 2𝜖 + 2𝛿.

For 𝛿 ≤ 𝜖/2, by definition \ 𝑗 is a 3𝜖-global minimum.

In what follows, we estimate the probability that a sample drawn from 𝜋𝛽 fails to fall into B𝜖,𝑟𝜖 .
Note that for \ ∉ B𝜖,𝑟𝜖 ,

𝐹𝑛 (\ ) − 𝐹𝑛 (\ ∗0) ≥ 𝜖 − 2𝛿.

Then,

P
(
˜\𝛽 ∈ B𝜖,𝑟𝜖

)
=

∫
B𝜖,𝑟𝜖

exp(−𝛽𝐹𝑛 (\ ))𝑑\∫
B𝜖,𝑟𝜖

exp(−𝛽𝐹𝑛 (\ ))𝑑\ +
∫
Θ/B𝜖,𝑟𝜖

exp(−𝛽𝐹𝑛 (\ ))𝑑\

≥

∫
B𝜖,𝑟𝜖

exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\ ∗0)])𝑑\∫
B𝜖,𝑟𝜖

exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\ ∗
0
)])𝑑\ + exp(−𝛽 (𝜖 − 2𝛿)) · Vol(Θ/B𝜖,𝑟𝜖 )

≥

∫
B𝑟𝜖 (\ ∗0 )

exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\ ∗0)])𝑑\∫
B𝑟𝜖 (\ ∗0 )

exp(−𝛽 [𝐹𝑛 (\ ) − 𝐹𝑛 (\ ∗
0
)])𝑑\ + exp(−𝛽 (𝜖 − 2𝛿)) · Vol(Θ/B𝜖,𝑟𝜖 )

.

Similar to the proof of Proposition 3.3, for 𝛽 = Ω(𝑟−2𝜖 ), we have

P
(
˜\𝛽 ∉ B𝜖,𝑟𝜖

)
= exp

{
− 𝛽

(
𝜖 − 2𝛿

)
+ 𝑑 log 𝛽 +𝐶𝑑

}
.

For 𝛿 ≤ 𝜖/4, we have
P
(
˜\𝛽 ∉ B𝜖,𝑟𝜖

)
= exp

(
− 𝛽𝜖/2 + 𝑑 log 𝛽 +𝐶𝑑

)
.

Lastly, we use I𝑛 (𝛿) to denote the random event that 𝐹𝑛 (\ ) is a 𝛿-approximation of 𝐹 (\ ). Similar

to the proof of Theorem 3.5, we have

P(F3𝜖,2) − 𝜌 ≤ P
(
F3𝜖,2 ∩ 𝐼𝑛 (𝛿)

)
≤ P

(
F3𝜖,2 |𝐼𝑛 (𝛿)

)
.

and

P(F3𝜖,2 |I𝑛 (𝛿)) ≤
(
exp

(
− 𝛽𝜖/2 + 𝑑 log 𝛽 +𝐶𝑑

)
+ 𝛿𝛽

)𝑚
.

□
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